19 resultados para Th1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adjuvant efficacy of cationic liposomes composed of dimethyldioctadecylammonium bromide and trehalose dibehenate (DDA:TDB) is well established. Whilst the mechanism behind its immunostimulatory action is not fully understood, the ability of the formulation to promote a 'depot effect' is a consideration. The depot effect has been suggested to be primarily due to their cationic nature which results in electrostatic adsorption of the antigen and aggregation of the vesicles at the site of injection. The aim of the study was to further test this hypothesis by investigating whether sterically stabilising DDA:TDB with polyethylene glycol (PEG) reduces aggregation, and subsequently influences the formation of a depot at the site of injection. Results reported demonstrate that high (25%) levels of PEG was able to significantly inhibit the formation of a liposome depot and also severely limit the retention of antigen at the site, resulting in a faster drainage of the liposomes from the site of injection. This change in biodistribution profile was reflected in the immunisation response, where lower levels of IgG2b antibody and IFN-? and higher level of IL-5 cytokine were found. Furthermore entrapping antigen within DDA:TDB liposomes did not improve antigen retention at the injection site compared surface adsorbed antigen. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunostimulatory capacities of cationic liposomes are well-documented and are attributed both to inherent immunogenicity of the cationic lipid and more physical capacities such as the formation of antigen depots and antigen delivery. Very few studies have however been conducted comparing the immunostimulatory capacities of different cationic lipids. In the present study we therefore chose to investigate three of the most well-known cationic liposome-forming lipids as potential adjuvants for protein subunit vaccines. The ability of 3ß-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and dimethyldioctadecylammonium (DDA) liposomes incorporating immunomodulating trehalose dibehenate (TDB) to form an antigen depot at the site of injection (SOI) and to induce immunological recall responses against coadministered tuberculosis vaccine antigen Ag85B-ESAT-6 are reported. Furthermore, physical characterization of the liposomes is presented. Our results suggest that liposome composition plays an important role in vaccine retention at the SOI and the ability to enable the immune system to induce a vaccine specific recall response. While all three cationic liposomes facilitated increased antigen presentation by antigen presenting cells, the monocyte infiltration to the SOI and the production of IFN-? upon antigen recall was markedly higher for DDA and DC-Chol based liposomes which exhibited a longer retention profile at the SOI. A long-term retention and slow release of liposome and vaccine antigen from the injection site hence appears to favor a stronger Th1 immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives - Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6'-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B–ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods - Liposomal were prepared at a 5?:?1 DDA–TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings - As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion - These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6′-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn- glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B-ESAT-6-Rv2660c, a multistage tuberculosis vaccine. Methods Liposomal were prepared at a 5: 1 DDA-TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered. Key findings As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation. Conclusion These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system. © 2013 Royal Pharmaceutical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simplified C32 monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C32 MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 µm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-? cytokine production from splenocytes and higher IL-1ß at the site of injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an ‘antigen depot’ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the ‘depot-effect’ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.