50 resultados para Teaching performance on-line
Resumo:
We analyse the dynamics of a number of second order on-line learning algorithms training multi-layer neural networks, using the methods of statistical mechanics. We first consider on-line Newton's method, which is known to provide optimal asymptotic performance. We determine the asymptotic generalization error decay for a soft committee machine, which is shown to compare favourably with the result for standard gradient descent. Matrix momentum provides a practical approximation to this method by allowing an efficient inversion of the Hessian. We consider an idealized matrix momentum algorithm which requires access to the Hessian and find close correspondence with the dynamics of on-line Newton's method. In practice, the Hessian will not be known on-line and we therefore consider matrix momentum using a single example approximation to the Hessian. In this case good asymptotic performance may still be achieved, but the algorithm is now sensitive to parameter choice because of noise in the Hessian estimate. On-line Newton's method is not appropriate during the transient learning phase, since a suboptimal unstable fixed point of the gradient descent dynamics becomes stable for this algorithm. A principled alternative is to use Amari's natural gradient learning algorithm and we show how this method provides a significant reduction in learning time when compared to gradient descent, while retaining the asymptotic performance of on-line Newton's method.
Resumo:
Structural analysis in handwritten mathematical expressions focuses on interpreting the recognized symbols using geometrical information such as relative sizes and positions of the symbols. Most existing approaches rely on hand-crafted grammar rules to identify semantic relationships among the recognized mathematical symbols. They could easily fail when writing errors occurred. Moreover, they assume the availability of the whole mathematical expression before being able to analyze the semantic information of the expression. To tackle these problems, we propose a progressive structural analysis (PSA) approach for dynamic recognition of handwritten mathematical expressions. The proposed PSA approach is able to provide analysis result immediately after each written input symbol. This has an advantage that users are able to detect any recognition errors immediately and correct only the mis-recognized symbols rather than the whole expression. Experiments conducted on 57 most commonly used mathematical expressions have shown that the PSA approach is able to achieve very good performance results.
Resumo:
Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.
Resumo:
Attention-deficit hyperactivity disorder (ADHD) is the most prevalent and impairing neurodevelopmental disorder, with worldwide estimates of 5.29%. ADHD is clinically characterized by hyperactivity-impulsivity and inattention, with neuropsychological deficits in executive functions, attention, working memory and inhibition. These cognitive processes rely on prefrontal cortex function; cognitive training programs enhance performance of ADHD participants supporting the idea of neuronal plasticity. Here we propose the development of an on-line puzzle game based assessment and training tool in which participants must deduce the ‘winning symbol’ out of N distracters. To increase ecological validity of assessments strategically triggered Twitter/Facebook notifications will challenge the ability to ignore distracters. In the UK, significant cost for the disorder on health, social and education services, stand at £23m a year. Thus the potential impact of neuropsychological assessment and training to improve our understanding of the pathophysiology of ADHD, and hence our treatment interventions and patient outcomes, cannot be overstated.
Resumo:
We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.
Resumo:
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.
Resumo:
We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.
Resumo:
We present a framework for calculating globally optimal parameters, within a given time frame, for on-line learning in multilayer neural networks. We demonstrate the capability of this method by computing optimal learning rates in typical learning scenarios. A similar treatment allows one to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule as well as to compare different training methods.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.
Resumo:
The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data.
Resumo:
On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.
Resumo:
An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives insight into decreasing the time required for training. The realizable and over-realizable cases are studied in detail; the phase of learning in which the hidden units are unspecialized (symmetric phase) and the phase in which asymptotic convergence occurs are analyzed, and their typical properties found. Finally, simulations are performed which strongly confirm the analytic results.