38 resultados para TOUGHNESS
Resumo:
Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.
Resumo:
A range of plain carbon, carbon-manganese and low alloy cast steels were tested in order to determine their various fracture toughness values under elastic and elastic-plastic conditions. The main fracture toughness parameters which are considered are (1) Linear Elastic Fracture Mechanics (LEFM), (2) the J-Contour Integral, and (3) Crack Opening Displacement (COD). Results are obtained from fracture toughness specimens of various dimensions and the relevance of the validity criteria to cast steels is considered in some detail. In addition, the effect of casting position on specimen toughness values was noted. Valid KIC results according to LEFM, were obtained for three of the eight cast steels tested. Although KIC values from LEFM were not obtained from the remaining five steels, critical COD and J-integral values were determined. It is postulated that these values and particularly the critical J values can be used, with confidence for material selection or in defect tolerance calculations using these steels. Toughness values were found to vary with casting position in several of the steels tested and the possible reasons for such variations are discussed in the Thesis.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
The fracture properties of a series of alloys containing 15% chromium and 0.8 to 3.4% carbon are investigated using strain fracture toughness testing techniques. The object of the work is to apply a quantitative method of measuring toughness to abrasion resistant materials, which have previously been assessed on an empirical basis; and to examine the relationship between microstructure and K10 in an attempt to improve the toughness of inherently brittle materials. A review of the relevant literature includes discussion of the background to the alloy series under investigation, a survey of the development of fracture mechanics and the emergence of K10 as a toughness parameter. Metallurgical variables such as composition, heat treatment, grain size, and hot working are ???? to relate microstructure to toughness, and fractographic evidence is used to substantiate the findings. The results are applied to a model correlating ductile fracture with plastic strain instability, and the nucleation of voids. Strain induced martensite formation in austenitic structures is analysed in terms of the plastic energy dissipation mechanisms operating at the crack tip. Emphasis is placed on the lower carbon alloys in the series, and a composition put forward to optimise wear resistance and toughness. The properties of established competitive materials are compared to the proposed alloy on a toughness and cost basis.
Resumo:
Tensile strengths, impact energies, and fracture toughness data are presented for pure Fe-0.5 C, Astaloy A with 0.2 and 0.6%C, and for Distaloy AB-0.6%C at relative densities of about 0.9, achieved by conventional pressing and sintering, and at close to 1.0, achieved by powder forging. At low relative density, properties are controlled by sizes of sinter necks; it is postulated that toughness scales as (x/a)4, x/a being the ratio of neck diameter to particle diameter. At high relative density, microvoid coalescence and good toughness is observed for low strength microstructures whereas cleavage and poor toughness is a concomitant of high strength.
Resumo:
Knoop and Vickers indentation cracks have frequently been used as model 'precracks' in ceramic bend specimens for fracture toughness (K1c) determination. Indentation residual stress reduces the measured K1c but can be removed or accounted for by grinding, annealing, or modelling. Values of K1c are obtained for four materials using Vickers indentations and an improved stress intensity factor. Methods for residual stress removal or incorporation are compared, and the most reliable stress removal alternative is identified for each material. © 1996 The Institute of Materials.
Resumo:
High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.
Resumo:
The fracture behaviour and plane strain fracture toughness, KIC, of four 8090-based metal-matrix composites containing 20 weight % SiC particles, 3, 6 and 23 μm in diameter, has been evaluated as a function of matrix ageing condition. Toughness values are found to be almost independent of reinforcement size. Ageing at 170°C results in a monotonic decrease in toughness with increasing strength up to the peak condition, with no subsequent recovery in toughness on overageing. However, unlike reinforced 8090, the composites are not found to be susceptible to intergranular embrittlement on overageing. The observed trends are found to be independent of reinforcement size. These findings are explained in terms of the strength, work hardening behaviour and nature and distribution of void-nucleating particles in the matrix. © 1993.
Resumo:
The results of fracture toughness tests on a high strength steel 300m are presented. These results show (i) that in the presence of through-thickness cracks the toughness remains constant down to (a/W)-ratios as low as 0.01 and failure loads up to 0.85σy, and (ii) that the material is more resistant to crack growth when the cracks are semi-elliptical in shape, giving a toughness value which is almost 25 per cent higher than the through-thickness one. Three independent stress analyses are used to obtain stress intensity values for the semi-elliptical cracks and additional confirmation of the increase in toughness comes from stretch zone measurements.