25 resultados para Suffix array
Resumo:
The authors have demonstrated an optical fibre grating based delay line which produces time delays in increments as small as 31 ps. The device could provide a true time delay component for a phased array antenna
Resumo:
Sensory cells usually transmit information to afferent neurons via chemical synapses, in which the level of noise is dependent on an applied stimulus. Taking into account such dependence, we model a sensory system as an array of LIF neurons with a common signal. We show that information transmission is enhanced by a nonzero level of noise. Moreover, we demonstrate a phenomenon similar to suprathreshold stochastic resonance with additive noise. We remark that many properties of information transmission found for the LIF neurons was predicted by us before with simple binary units [Phys. Rev. E 75, 021121 (2007)]. This confirmation of our predictions allows us to point out identical roots of the phenomena found in the simple threshold systems and more complex LIF neurons.
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.
Resumo:
A novel form of low coherence interferometric sensor is described. The channelled spectrum produced by illuminating a sensing interferometer with a broadband source is analysed directly using a CCD array. The system currently provides unambiguous measurement over a range of 1.5 mm with an accuracy of better than 6 µm.
Resumo:
The fabrication of in-fibre Bragg gratings, and the application of arrays of such gratings as strain sensors and as true time delay elements for the control of phased array antennas is reported. Chirped period Bragg gratings were produced using the fibre deformation fabrication technique, with chirps of between 2.9nm and 17.3nm achieved. Arrays of 5mm and 2mm long uniform period Bragg gratings were fabricated using the inscription method, for use as true time delay elements,dissimilar wavefronts and their spectral characteristics recorded. The uniform period grating arrays were used to create minimum time delays of 9.09ps, 19.02ps and 31ps; making them suitable for controlling phased array antennas operating at RF frequencies of up to 3GHz, with 10° phase resolution. Four 4mm long chirped gratings were produced using the dissimilar wavefronts fabrication method, having chirps of 7nm, 12nm, 20nm and 30nm, and were used to create time delays of between 0.3ps and 59ps. Hence they are suitable for controlling phased array antennas at RF frequencies of up to 48GHz. The application of in fibre Bragg gratings as strain sensors within smart structure materials was investigated, with their sensitivity to applied strain and compression measured for both embedded and surface mounted uniform period and fibre Fabry-Perot filter gratings. A fibre Bragg grating sensor demultiplexing scheme based on a liquid crystal filled Fabry-Perot etalon tuneable transmission filter was proposed, successfully constructed and fully characterised. Three characteristics of the LCFP etalon were found to pose operational limitations to its application in a Bragg grating sensor system; most significantly, the resonance peak wavelength was highly (-2,77nm/°C) temperature dependent. Several methods for minimising this temperature sensitivity were investigated, but enjoyed only limited success. It was therefore concluded that this type (E7 filled) of LCFP etalon is unsuitable for use as a Bragg grating sensor demultiplexing element.
Resumo:
The slow down in the drug discovery pipeline is, in part, owing to a lack of structural and functional information available for new drug targets. Membrane proteins, the targets of well over 50% of marketed pharmaceuticals, present a particular challenge. As they are not naturally abundant, they must be produced recombinantly for the structural biology that is a prerequisite to structure-based drug design. Unfortunately, however, obtaining high yields of functional, recombinant membrane proteins remains a major bottleneck in contemporary bioscience. While repeated rounds of trial-and-error optimization have not (and cannot) reveal mechanistic details of the biology of recombinant protein production, examination of the host response has provided new insights. To this end, we published an early transcriptome analysis that identified genes implicated in high-yielding yeast cell factories, which has enabled the engineering of improved production strains. These advances offer hope that the bottleneck of membrane protein production can be relieved rationally.
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
A practical implementation of coherent wavelength division multiplexing (CoWDM) is demonstrated for the first time using injection-locked lasers and a DPSK modulator array. For a 31.99 Gbit/s system (three subcarriers at 10.664 Gbit/s) the null-to-null spectral bandwidth was only 42.656 GHz and the average receiver sensitivity measured was -33.5 dBm when all subcarrier phases were optimised.
Resumo:
Optical fibre strain sensors using Fibre Bragg Gratings (FBGs) are poised to play a major role in structural health monitoring in a variety of application from aerospace to civil engineering. At the heart of technology is the optoelectronic instrumentation required to convert optical signals into measurands. Users are demanding compact, lightweight, rugged and low cost solutions. This paper describes development of a new device based on a blazed FBG and CCD array that can potentially meet the above demands. We have shown that this very low cost technique may be used to interrogate a WDM array of sensor gratings with highly accurate and highly repeatable results unaffected by the polarisation state of the radiation. In this paper, we present results showing that sensors may be interrogated with an RMS error of 1.7pm, drift below 0.12pm and dynamic range of up to 65nm.
Resumo:
A novel form of low coherence interferometric sensor is described. The channelled spectrum produced by illuminating a sensing interferometer with a broadband source is analysed directly using a CCD array. The system currently provides unambiguous measurement over a range of 1.5 mm with an accuracy of better than 6 µm.
Resumo:
The channelled spectrum of an optical beam generated by a laser diode operated below threshold after traversing microscope glass plates is spectrally analysed using a grating and a CCD linear array. The experiment has the following goals: to display the resulting channelled spectrum, to familiarize students with an important topic in metrology and to illustrate some interesting topics from spectroscopy using a CCD array as a spectrometer.
Resumo:
We present what is to our knowledge the first comprehensive investigation of the use of blazed fiber Bragg gratings (BFBGs) to interrogate wavelength division multiplexed (WDM) in-fiber optical sensor arrays. We show that the light outcoupled from the core of these BFBGs is radiated with sufficient optical power that it may be detected with a low-cost charge-coupled device (CCD) array. We present thorough system performance analysis that shows sufficient spectral-spatial resolution to decode sensors with a WDM separation of 75 ρm, signal-to-noise ratio greater than 45-dB bandwidth of 70 nm, and drift of only 0.1 ρm. We show the system to be polarization-state insensitive, making the BFBG-CCD spectral analysis technique a practical, extremely low-cost, alternative to traditional tunable filter approaches.
Resumo:
Preliminary results are given for a long period grating sensing array scheme based upon a derivative spectroscopy interrogation technique for Human Respiratory Plethysmography with simultaneous measurements of a spirometer, reasonable agreement with recorded volumetric changes was found.
Resumo:
In this paper, multiplexed sensor network capable of monitoring the shape changes of the torso for respiratory function monitoring is developed. As a demonstration, LPGs written into refractive index insensitive, progressive three layered fibre are embedded into supporting material is then placed on a resuscitation training manikin simulating respiration. A derivative spectroscopy interrogation technique is implemented and the bend sensitivity of the LPGs is used to reconstruct the shape of the manikin's torso. © 2003 IEEE.