26 resultados para Spatial Scale
Resumo:
Gamma activity to stationary grating stimuli was studied non-invasively using MEG recordings in humans. Using a spatial filtering technique, we localized gamma activity to primary visual cortex. We tested the hypothesis that spatial frequency properties of visual stimuli may be related to the temporal frequency characteristics of the associated cortical responses. We devised a method to assess temporal frequency differences between stimulus-related responses that typically exhibit complex spectral shapes. We applied this methodology to either single-trial (induced) or time-averaged (evoked) responses in four frequency ranges (0-40, 20-60, 40-80 and 60-100 Hz) and two time windows (either the entire duration of stimulus presentation or the first second following stimulus onset). Our results suggest that stimuli of varying spatial frequency induce responses that exhibit significantly different temporal frequency characteristics. These effects were particularly accentuated for induced responses in the classical gamma frequency band (20-60 Hz) analyzed over the entire duration of stimulus presentation. Strikingly, examining the first second of the responses following stimulus onset resulted in significant loss in stimulus specificity, suggesting that late signal components contain functionally relevant information. These findings advocate a functional role of gamma activity in sensory representation. We suggest that stimulus specific frequency characteristics of MEG signals can be mapped to processes of neuronal synchronization within the framework of coupled dynamical systems.
Resumo:
Masking is said to occur when a mask stimulus interferes with the visibility of a target (test) stimulus. One widely held view of this process supposes interactions between mask and test mechanisms (cross-channel masking), and explicit models (e.g., J. M. Foley, 1994) have proposed that the interactions are inhibitory. Unlike a within-channel model, where masking involves the combination of mask and test stimulus within a single mechanism, this cross-channel inhibitory model predicts that the mask should attenuate the perceived contrast of a test stimulus. Another possibility is that masking is due to an increase in noise, in which case, perception of contrast should be unaffected once the signal exceeds detection threshold. We use circular patches and annuli of sine-wave grating in contrast detection and contrast matching experiments to test these hypotheses and investigate interactions across spatial frequency, orientation, field position, and eye of origin. In both types of experiments we found substantial effects of masking that can occur over a factor of 3 in spatial frequency, 45° in orientation, across different field positions and between different eyes. We found the effects to be greatest at the lowest test spatial frequency we used (0.46 c/deg), and when the mask and test differed in all four dimensions simultaneously. This is surprising in light of previous work where it was concluded that suppression from the surround was strictly monocular (C. Chubb, G. Sperling, & J. A. Solomon, 1989). The results confirm that above detection threshold, cross-channel masking involves contrast suppression and not (purely) mask-induced noise. We conclude that cross-channel masking can be a powerful phenomenon, particularly at low test spatial frequencies and when mask and test are presented to different eyes. © 2004 ARVO.
Resumo:
Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.
Resumo:
Simple features such as edges are the building blocks of spatial vision, and so I ask: how arevisual features and their properties (location, blur and contrast) derived from the responses ofspatial filters in early vision; how are these elementary visual signals combined across the twoeyes; and when are they not combined? Our psychophysical evidence from blur-matchingexperiments strongly supports a model in which edges are found at the spatial peaks ofresponse of odd-symmetric receptive fields (gradient operators), and their blur B is givenby the spatial scale of the most active operator. This model can explain some surprisingaspects of blur perception: edges look sharper when they are low contrast, and when theirlength is made shorter. Our experiments on binocular fusion of blurred edges show that singlevision is maintained for disparities up to about 2.5*B, followed by diplopia or suppression ofone edge at larger disparities. Edges of opposite polarity never fuse. Fusion may be served bybinocular combination of monocular gradient operators, but that combination - involvingbinocular summation and interocular suppression - is not completely understood.In particular, linear summation (supported by psychophysical and physiological evidence)predicts that fused edges should look more blurred with increasing disparity (up to 2.5*B),but results surprisingly show that edge blur appears constant across all disparities, whetherfused or diplopic. Finally, when edges of very different blur are shown to the left and righteyes fusion may not occur, but perceived blur is not simply given by the sharper edge, nor bythe higher contrast. Instead, it is the ratio of contrast to blur that matters: the edge with theAbstracts 1237steeper gradient dominates perception. The early stages of binocular spatial vision speak thelanguage of luminance gradients.
Resumo:
We studied the relationship between the decline in sensitivity that occurs with eccentricity for stimuli of different spatial scale defined by either luminance (LM) or contrast (CM) modulation. We show that the detectability of CM stimuli declines with eccentricity in a spatial frequency-dependent manner, and that the rate of sensitivity decline for CM stimuli is roughly that expected from their 1st order carriers, except, possibly, at finer scales. Using an equivalent noise paradigm, we investigated the possible reasons for why the foveal sensitivity for detecting LM and CM stimuli differs as well as the reason why the detectability of 1st order stimuli declines with eccentricity. We show the former can be modeled by an increase in internal noise whereas the latter involves both an increase in internal noise and a loss of efficiency. To encompass both the threshold and suprathreshold transfer properties of peripheral vision, we propose a model in terms of the contrast gain of the underlying mechanisms.
Resumo:
We have shown previously that a template model for edge perception successfully predicts perceived blur for a variety of edge profiles (Georgeson, 2001 Journal of Vision 1 438a; Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54). This study concerns the perceived contrast of edges. Our model spatially differentiates the luminance profile, half-wave rectifies this first derivative, and then differentiates again to create the edge's 'signature'. The spatial scale of the signature is evaluated by filtering it with a set of Gaussian derivative operators. This process finds the correlation between the signature and each operator kernel at each position. These kernels therefore act as templates, and the position and scale of the best-fitting template indicate the position and blur of the edge. Our previous finding, that reducing edge contrast reduces perceived blur, can be explained by replacing the half-wave rectifier with a smooth, biased rectifier function (May and Georgeson, 2003 Perception 32 388; May and Georgeson, 2003 Perception 32 Supplement, 46). With the half-wave rectifier, the peak template response R to a Gaussian edge with contrast C and scale s is given by: R=Cp-1/4s-3/2. Hence, edge contrast can be estimated from response magnitude and blur: C=Rp1/4s3/2. Use of this equation with the modified rectifier predicts that perceived contrast will decrease with increasing blur, particularly at low contrasts. Contrast-matching experiments supported this prediction. In addition, the model correctly predicts the perceived contrast of Gaussian edges modified either by spatial truncation or by the addition of a ramp.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.
Resumo:
We describe a template model for perception of edge blur and identify a crucial early nonlinearity in this process. The main principle is to spatially filter the edge image to produce a 'signature', and then find which of a set of templates best fits that signature. Psychophysical blur-matching data strongly support the use of a second-derivative signature, coupled to Gaussian first-derivative templates. The spatial scale of the best-fitting template signals the edge blur. This model predicts blur-matching data accurately for a wide variety of Gaussian and non-Gaussian edges, but it suffers a bias when edges of opposite sign come close together in sine-wave gratings and other periodic images. This anomaly suggests a second general principle: the region of an image that 'belongs' to a given edge should have a consistent sign or direction of luminance gradient. Segmentation of the gradient profile into regions of common sign is achieved by implementing the second-derivative 'signature' operator as two first-derivative operators separated by a half-wave rectifier. This multiscale system of nonlinear filters predicts perceived blur accurately for periodic and aperiodic waveforms. We also outline its extension to 2-D images and infer the 2-D shape of the receptive fields.
Resumo:
The fundamental problem faced by noninvasive neuroimaging techniques such as EEG/MEG1 is to elucidate functionally important aspects of the microscopic neuronal network dynamics from macroscopic aggregate measurements. Due to the mixing of the activities of large neuronal populations in the observed macroscopic aggregate, recovering the underlying network that generates the signal in the absence of any additional information represents a considerable challenge. Recent MEG studies have shown that macroscopic measurements contain sufficient information to allow the differentiation between patterns of activity, which are likely to represent different stimulus-specific collective modes in the underlying network (Hadjipapas, A., Adjamian, P., Swettenham, J.B., Holliday, I.E., Barnes, G.R., 2007. Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex. NeuroImage 35, 518–530). The next question arising in this context is whether aspects of collective network activity can be recovered from a macroscopic aggregate signal. We propose that this issue is most appropriately addressed if MEG/EEG signals are to be viewed as macroscopic aggregates arising from networks of coupled systems as opposed to aggregates across a mass of largely independent neural systems. We show that collective modes arising in a network of simulated coupled systems can be indeed recovered from the macroscopic aggregate. Moreover, we show that nonlinear state space methods yield a good approximation of the number of effective degrees of freedom in the network. Importantly, information about hidden variables, which do not directly contribute to the aggregate signal, can also be recovered. Finally, this theoretical framework can be applied to experimental MEG/EEG data in the future, enabling the inference of state dependent changes in the degree of local synchrony in the underlying network.
Resumo:
This thesis investigates various aspects of peripheral vision, which is known not to be as acute as vision at the point of fixation. Differences between foveal and peripheral vision are generally thought to be of a quantitative rather than a qualitative nature. However, the rate of decline in sensitivity between foveal and peripheral vision is known to be task dependent and the mechanisms underlying the differences are not yet well understood. Several experiments described here have employed a psychophysical technique referred to as 'spatial scaling'. Thresholds are determined at several eccentricities for ranges of stimuli which are magnified versions of one another. Using this methodology a parameter called the E2 value is determined, which defines the eccentricity at which stimulus size must double in order to maintain performance equivalent to that at the fovea. Experiments of this type have evaluated the eccentricity dependencies of detection tasks (kinetic and static presentation of a differential light stimulus), resolution tasks (bar orientation discrimination in the presence of flanking stimuli, word recognition and reading performance), and relative localisation tasks (curvature detection and discrimination). Most tasks could be made equal across the visual field by appropriate magnification. E2 values are found to vary widely dependent on the task, and possible reasons for such variations are discussed. The dependence of positional acuity thresholds on stimulus eccentricity, separation and spatial scale parameters is also examined. The relevance of each factor in producing 'Weber's law' for position can be determined from the results.
Resumo:
Distributed representations (DR) of cortical channels are pervasive in models of spatio-temporal vision. A central idea that underpins current innovations of DR stems from the extension of 1-D phase into 2-D images. Neurophysiological evidence, however, provides tenuous support for a quadrature representation in the visual cortex, since even phase visual units are associated with broader orientation tuning than odd phase visual units (J.Neurophys.,88,455–463, 2002). We demonstrate that the application of the steering theorems to a 2-D definition of phase afforded by the Riesz Transform (IEEE Trans. Sig. Proc., 49, 3136–3144), to include a Scale Transform, allows one to smoothly interpolate across 2-D phase and pass from circularly symmetric to orientation tuned visual units, and from more narrowly tuned odd symmetric units to even ones. Steering across 2-D phase and scale can be orthogonalized via a linearizing transformation. Using the tiltafter effect as an example, we argue that effects of visual adaptation can be better explained by via an orthogonal rather than channel specific representation of visual units. This is because of the ability to explicitly account for isotropic and cross-orientation adaptation effect from the orthogonal representation from which both direct and indirect tilt after-effects can be explained.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.
Resumo:
To make vision possible, the visual nervous system must represent the most informative features in the light pattern captured by the eye. Here we use Gaussian scale-space theory to derive a multiscale model for edge analysis and we test it in perceptual experiments. At all scales there are two stages of spatial filtering. An odd-symmetric, Gaussian first derivative filter provides the input to a Gaussian second derivative filter. Crucially, the output at each stage is half-wave rectified before feeding forward to the next. This creates nonlinear channels selectively responsive to one edge polarity while suppressing spurious or "phantom" edges. The two stages have properties analogous to simple and complex cells in the visual cortex. Edges are found as peaks in a scale-space response map that is the output of the second stage. The position and scale of the peak response identify the location and blur of the edge. The model predicts remarkably accurately our results on human perception of edge location and blur for a wide range of luminance profiles, including the surprising finding that blurred edges look sharper when their length is made shorter. The model enhances our understanding of early vision by integrating computational, physiological, and psychophysical approaches. © ARVO.
Resumo:
Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council].