35 resultados para Social BI, Social Business Intelligence, Sentiment Analysis, Opinion Mining.
Resumo:
Microposts are small fragments of social media content that have been published using a lightweight paradigm (e.g. Tweets, Facebook likes, foursquare check-ins). Microposts have been used for a variety of applications (e.g., sentiment analysis, opinion mining, trend analysis), by gleaning useful information, often using third-party concept extraction tools. There has been very large uptake of such tools in the last few years, along with the creation and adoption of new methods for concept extraction. However, the evaluation of such efforts has been largely consigned to document corpora (e.g. news articles), questioning the suitability of concept extraction tools and methods for Micropost data. This report describes the Making Sense of Microposts Workshop (#MSM2013) Concept Extraction Challenge, hosted in conjunction with the 2013 World Wide Web conference (WWW'13). The Challenge dataset comprised a manually annotated training corpus of Microposts and an unlabelled test corpus. Participants were set the task of engineering a concept extraction system for a defined set of concepts. Out of a total of 22 complete submissions 13 were accepted for presentation at the workshop; the submissions covered methods ranging from sequence mining algorithms for attribute extraction to part-of-speech tagging for Micropost cleaning and rule-based and discriminative models for token classification. In this report we describe the evaluation process and explain the performance of different approaches in different contexts.
Resumo:
he push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable Purpose The push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable methodology, which bioenergy companies should be using to measure public opinion in the consultation process. Preliminary analysis shows promising results. Research limitations/implications Analysis is preliminary and based on a small dataset. It is intended only to illustrate the potential of sentiment analysis and not to draw general conclusions about the bioenergy sector. Originality/value Opinion mining, though established in marketing and political analysis, is not yet systematically applied as a planning consultation tool. This is a missed opportunity.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-based approaches require expensive manual annotation effort. In this paper, we propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon with preferences on expectations of sentiment labels of those lexicon words being expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie-review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than existing weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
This thesis deals with the problematic of the business systems systemic purpose definition. The definition of the systemic purpose, which is regarded as the utmost expression of the system's purposefulness, is to be achieved by ensuring the participation of all the stakeholders, if possible, who affect or they are affected by the business system's operations. The nature of participation, defined as a process of the stakeholders' perceptual exchanges, is deemed to be problematic in itself due to the influence exerted upon it by organisational power, coercion and false consciousness. The main focus of the thesis then is to make aware and provide the stakeholders with an explicit philosophical pedestal and a set of principles upon which a meta- epistemological framework for the enquiry of the business system's purposeful behaviour is developed. In addition, the thesis focuses on the development of a methodology that can be used by the stakeholders to achieve self-knowledge through the critical and systemic examination of their normative presuppositions, about the business system, at both sociological as well as the psychological levels concurrently and the subsequent development of an organisational intrinsically motivated information system. According to the critical systems philosophy and principles, developed in this thesis, normative presuppositions define the stakeholders' perceptions about the purposeful behaviour of the business system they perceived as having a material, an informational and/or an emacipatory stake (human interest) in. The methodology will provide Information Systems that demonstrably improve coordination of organisational activities by enabling the development and maintenance of a single/multifaceted view of purpose throughout organisations.
Resumo:
Purpose - The purpose of this paper is to show how QFD can be used as part of a structured planning and analysis framework for micro-sized enterprises to build-up their e-business capabilities. Design/methodology/approach - This case study has been produced using a new framework which integrates the balanced scorecard, value chain and quality function deployment techniques into an integrated framework known as the E-Business Planning and Analysis Framework (E-PAF). It has been produced using an action research approach. Findings - A new framework with a supporting case study is provided. This case study has demonstrated that the framework can be applied successfully to micro-sized enterprises (those with less than ten employees) to successfully plan new strategic and technical developments. This will enhance the online service that the company is able to provide. Research limitations/implications - This paper presents a single case study. The technical recommendations are currently being implemented. Originality/value - Such analytical techniques are most commonly associated with large organisations, and are not specifically associated with e-business planning. This paper provides a new framework that will be of general applicability to other similarly sized enterprises that are looking to improve e-business capabilities. © Emerald Group Publishing Limited.
Resumo:
This article presents two novel approaches for incorporating sentiment prior knowledge into the topic model for weakly supervised sentiment analysis where sentiment labels are considered as topics. One is by modifying the Dirichlet prior for topic-word distribution (LDA-DP), the other is by augmenting the model objective function through adding terms that express preferences on expectations of sentiment labels of the lexicon words using generalized expectation criteria (LDA-GE). We conducted extensive experiments on English movie review data and multi-domain sentiment dataset as well as Chinese product reviews about mobile phones, digital cameras, MP3 players, and monitors. The results show that while both LDA-DP and LDAGE perform comparably to existing weakly supervised sentiment classification algorithms, they are much simpler and computationally efficient, rendering themmore suitable for online and real-time sentiment classification on the Web. We observed that LDA-GE is more effective than LDA-DP, suggesting that it should be preferred when considering employing the topic model for sentiment analysis. Moreover, both models are able to extract highly domain-salient polarity words from text.
Resumo:
This chapter reports on a framework that has been successfully used to analyze the e-business capabilities of an organization with a view to developing their e-capability maturity levels. This should be the first stage of any systems development project. The framework has been used widely within start-up companies and well-established companies both large and small; it has been deployed in the service and manufacturing sectors. It has been applied by practitioners and consultants to help improve e-business capability levels, and by academics for teaching and research purposes at graduate and undergraduate levels. This chapter will provide an account of the unique e-business planning and analysis framework (E-PAF) and demonstrate how it works via an abridged version of a case study (selected from hundreds that have been produced). This will include a brief account of the three techniques that are integrated to form the analysis framework: quality function deployment (QFD) (Akao, 1972), the balanced scorecard (BSC) (Kaplan & Norton, 1992), and value chain analysis (VCA) (Porter, 1985). The case study extract is based on an online community and dating agency service identified as VirtualCom which has been produced through a consulting assignment with the founding directors of that company and has not been published previously. It has been chosen because it gives a concise, comprehensive example from an industry that is relatively easy to relate to.
Resumo:
In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.
Resumo:
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.