51 resultados para Power Electronics Converters
Resumo:
For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.
Resumo:
Switched Capacitor (SC) converters have been used for several years in low-power, power electronic energy conversion systems. However, because of their attractive features such as low-weight and high-density energy conversion and with the emergence of new circuit topologies and SiC switching devices, these circuits have recently been proposed for higher power applications. The resonant switched capacitor topology is a good candidate for high-power due to its very low-switching loss, but circuit parasitic inductance and resistance can have a significant effect on the resonant frequency of each cell. This paper discusses the influence of these parasitics on the performance of the converter and proposes a method by which these parasitics can be estimated. Simulation results and measurements from a hardware prototype are used to validate the technique.
Resumo:
To carry out stability and voltage regulation studies on more electric aircraft systems in which there is a preponderance of multi-pulse, rectifier-fed motor-drive equipment, average dynamic models of the rectifier converters are required. Existing methods are difficult to apply to anything other than single converters with a low pulse number. Therefore an efficient, compact method for deriving the approximate, linear, average model of 6- and 12-pulse rectifiers, based on the assumption of a small duration of the overlap angle is presented. The models are validated against detailed simulations and laboratory prototypes.
Resumo:
Wireless power transmission technology is gaining more and more attentions in city transportation applications due to its commensurate power level and efficiency with conductive power transfer means. In this paper, an inductively coupled wireless charging system for 48V light electric vehicle is proposed. The power stages of the system is evaluated and designed, including the high frequency inverter, the resonant network, full bridge rectifier, and the load matching converter. Small signal modeling and linear control technology is applied to the load matching converter for input voltage control, which effectively controls the wireless power flow. The prototype is built with a dsPIC digital signal controller; the experiments are carried out, and the results reveal nature performances of a series-series resonant inductive power charger in terms of frequency, air-gap length, power flow control, and efficiency issues.
Resumo:
A proposal to increase the existing residential LV grid voltage from 230 V to 300 V has been made in order to increase existing network capacity. A power-electronic AC-AC converter is then used to provide 230 V at each property. The equipment can also provide power-quality improvements to the network and load. Several constraints such as temperature rise at the converter location lead to a converter design requiring very high efficiency. In this paper different AC/AC converter topologies are presented which compares the power quality benefits, size and efficiency of each converter. The design and the control technique of the most suitable topology are verified using simulation and preliminary experimentally results of prototype hardware are also included. © 2013 IEEE.
Resumo:
This paper compares the performance of four different power electronic converter topologies, which have been proposed for STATCOM applications. Two of the topologies are Modular Multilevel Cascaded Converters (MMCC), whilst the remaining circuits utilize magnetic elements and an open-winding transformer configuration to combine individual power modules. It is assumed that the STATCOM has to work under unbalanced conditions, so that it delivers both positive and negative sequence currents. Simulation studies for the four topologies have been carried out using the simulation tool Saber. © 2013 IEEE.
Resumo:
A single-stage, three-phase AC-to-DC converter topology is proposed for high-frequency power supply applications. The principal features of the circuit include continuous current operation of the three AC input inductors, inherent shaping of the input currents, resulting in high power factor, a transformer isolated output, and only two active devices are required, both soft-switched. Resonant conversion techniques are used, and a high power factor is achieved by injecting high-frequency currents into the three-phase rectifier, producing a high frequency modulation of the rectifier input voltages. The current injection principle is explained and the system operation is confirmed by a combination of simulation and experimental results.
Resumo:
To examine the detailed operation of the power distribution network in a future more electric aircraft that employs electric actuation systems, a Micro-Cap SPICE simulation is developed for one of the essential buses. Particular attention is paid to model accurately the most important effects that influence system power quality. Representative system and flight data are used to illustrate the operation of the simulation and to assess the power quality conditions within the network as the flight control surfaces are deployed. The results illustrate the importance of correct cable sizing to ensure stable operation of actuators during transient conditions.
Resumo:
Power system simulation software is a useful tool for teaching the fundamentals of power system design and operation. However, existing commercial packages are not ideal for teaching work-based students because of high-cost, complexity of the software and licensing restrictions. This paper describes a set of power systems libraries that have been developed for use with the free, student-edition of a Micro-Cap Spice that overcomes these problems. In addition, these libraries are easily adapted to include power electronic converter based components into the simulation, such as HVDC, FACTS and smart-grid devices, as well as advanced system control functions. These types of technology are set to become more widespread throughout existing power networks, and their inclusion into a power engineering degree course is therefore becoming increasingly important.
Resumo:
This paper is part of a project which aims to research the opportunities for the re-use of batteries after their primary use in low and ultra low carbon vehicles on the electricity grid system. One potential revenue stream is to provide primary/secondary/high frequency response to National Grid through market mechanisms via DNO's or Energy service providers. Some commercial battery energy storage systems (BESS) already exist on the grid system, but these tend to use costly new or high performance batteries. Second life batteries should be available at lower cost than new batteries but reliability becomes an important issue as individual batteries may suffer from degraded performance or failure. Therefore converter topology design could be used to influence the overall system reliability. A detailed reliability calculation of different single phase battery-to-grid converter interfacing schemes is presented. A suitable converter topology for robust and reliable BESS is recommended.
Resumo:
This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.
Resumo:
A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.
Resumo:
There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.
Resumo:
A new topology of the high frequency alternating current (HFAC) inverter bridge arm is proposed which comprises a coupled inductor, a switching device and an active clamp circuit. Based on it, new single-phase and threephase inverters are proposed and their operating states are analysed along with the traditional H-bridge inverter. Multiphase and multi-level isolated inverters are also developed using the HFAC bridge arm. Furthermore, based on the proposed HFAC, a front-end DC-DC converter is also developed for photovoltaic systems to demonstrate the application of the proposed HFAC converter. Simulation and experimental results from prototype converters are carried out to validate the proposed topologies which can be utilised widely in high frequency power conversion applications such as induction heating and wireless power transfer.
Resumo:
This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission.