17 resultados para Periodical


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1830s, Marshall Hall carried out innumerable experiments on a great variety of animals to establish the concept of a ‘reflex arc’. In France F.L.Goltz showed that decerebrate frogs were still capable of complex behaviours. Thomas Laycock in England and Ivan Sechenov in Russia sought to apply the reflex idea to the brain. This paper follows the debate in the periodical literature of mid-Victorian England and discusses the contributions of WB Carpenter, Herbert Spencer, TH Huxley, W Clifford and others. The previous outing of this issue in the post-Cartesian seventeenth century had been largely suppressed by ecclesiastical authority. In the nineteenth century ecclesiastical power had waned, at least in England, and the debate could take a more open form. As neurophysiology and behavioural science developed, with the widespread acceptance of Darwinian evolution, it became more and more difficult to deny that brain and mind were part of the natural world and subject to the usual laws of cause and effect. This, of course, had powerful implications for the human self-image and for jurisprudence. These implications are still with us and the work of neurophysiologists such as Benjamin Libet have only reinforced them. Should humans be regarded as ‘automata’ and, if so, what becomes of ‘free will’, ‘responsibility’, and the rule of law? The Victorian debate is still useful and relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very recently, using tightly-focused femtosecond near-IR pulses, periodical sub-micron structures have been recorded [1,2]. Such microfabrication utilizes the multi-photon approach, which allows the inscription inside various non-photosensitive optical materials. The combination of multi-photon excitation with the point-by-point technique offers the great potential of creating non-uniform chirped gratings by controlling the rate of femtosecond pulses or the sample translation speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that regimes with dynamical chaos are inherent not only to nonlinear system but they can be generated by initially linear systems and the requirements for chaotic dynamics and characteristics need further elaboration. Three simplest physical models are considered as examples. In the first, dynamic chaos in the interaction of three linear oscillators is investigated. Analogous process is shown in the second model of electromagnetic wave scattering in a double periodical inhomogeneous medium occupying half-space. The third model is a linear parametric problem for the electromagnetic field in homogeneous dielectric medium which permittivity is modulated in time. © 2008 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very recently, using tightly-focused femtosecond near-IR pulses, periodical sub-micron structures have been recorded [1,2]. Such microfabrication utilizes the multi-photon approach, which allows the inscription inside various non-photosensitive optical materials. The combination of multi-photon excitation with the point-by-point technique offers the great potential of creating non-uniform chirped gratings by controlling the rate of femtosecond pulses or the sample translation speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface behaviour of materials is crucial to our everyday lives. Studies of the corrosive, reactive, optical and electronic properties of surfaces are thus of great importance to a wide range of industries including the chemical and electronics sectors. The surface properties of polymers can also be tuned for use in packaging, non stick coatings or for use in medical applications. Methods to characterise surface composition and reactivity are thus critical to the development of next generation materials. This report will outline the basic principles of X-ray photoelectron spectroscopy and how it can be applied to analyse the surfaces of inorganic materials. The role of XPS in understanding the nature of the active site in heterogeneous catalysts will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel tunable dispersion compensator (TDC) based on all-fiber distributed Gires-Tournois etaIons (DGTE), which is formed by overlapped chirped fiber gratings. Two DGTEs of opposite dispersion slope work together to generate a tunable periodical dispersion profile. The demonstrated TDCs have the advantages of multichannel operation, extremely low group-delay ripple, low loss, and low cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodical literature surveyed: January 1, 2011–June 30, 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodical literature surveyed: July 1, 2011 – December 31, 2011