46 resultados para PRECORNEAL TEAR FILM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels. Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis. Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time. Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Surfactant proteins A, B, C and D complex with (phospho)lipids to produce surfactants which provide low interfacial tensions. It is likely that similar complexation occurs in the tear film and contributes to its low surface tension. Synthetic protein-phospholipid complexes, with styrene maleic anhydrides (SMAs) as the protein analogue, have been shown to have similarly low surface tensions. This study investigates the potential of modified SMAs and/or SMA-phospholipid complexes, which form under physiological conditions, to supplement natural tear film surfactants. Method: SMAs were modified to provide structural variants which can form complexes under varying conditions. Infrared spectroscopy and Nuclear Magnetic Resonance were used to confirm SMA structure. Interfacial behaviour of the SMA and SMA-phospholipid complexes was studied using Langmuir trough, du Nûoy ring and pulsating bubblemethods. Factors which affect SMA-phospholipid complex formation, such as temperature and pH, were also investigated. Results: Structural manipulation of SMAs allows control over complex formation, including under physiological conditions (e.g. partial SMAesterfication allowed complexation with dimyristoylphosphatidylcholine, at pH7). The low surface tensions of the SMAs (42mN/m for static (du Nûoy ring) and 34mN/m for dynamic (Langmuir) techniques) demonstrate their surface activity at the air-aqueous interface. SMA-phospholipid complexes provide even lower surface tensions (~2 mN/m), approaching that of lung surfactant, as measured by the pulsating bubblemethod. Conclusions: Design of the molecular architecture of SMAs allows control over their surfactant properties. These SMAs could be used as novel tear films supplements, either alone to complex with native tear film phospholipids or delivered as synthetic protein-phospholipid complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: With the potential to address evaporative dry eye, a novel spray has been developed in which phospholipid liposomes are delivered to the tear film via the surface of the closed eyelid. This study evaluated the short-term effects of liposomal spray application on the lipid and stability characteristics of the pre-ocular tear film in normal eyes. Methods: Twenty-two subjects (12M, 10F) aged 35.1 ± 7.1 years participated in this prospective, randomised, double-masked investigation in which the liposomal spray was applied to one eye, and an equal volume of saline spray (control) applied to the contralateral eye. Lipid layer grade (LLG), non-invasive tear film stability (NIBUT) and tear meniscus height (TMH) were evaluated at baseline, and at 30, 60, 90 and 135 minutes post-application. Subjective reports of comfort were also compared. Results: Treated and control eyes were not significantly different at baseline (p>0.05). Post-application, LLG increased significantly, at 30 and 60 minutes, only in the treated eyes (p=0.005). NIBUT also increased significantly in the treated eyes only (p<0.001), at 30, 60 and 90 minutes. TMH did not alter significantly (p>0.05). Comfort improved relative to baseline in 46% of treated and 18% of control eyes, respectively, at 30 minutes post-application. Of those expressing a preference in comfort between the eyes, 68% preferred the liposomal spray. Conclusions: Consistent with subjective reports of improved comfort, statistically and clinically significant improvements in lipid layer thickness and tear film stability are observed in normal eyes for at least an hour after a single application of a phospholipid liposomal spray.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contact lenses have become a popular method of vision correction for millions of people globally. As with all devices designed for use within the body, interactions occur between the implanted material and the surrounding biological fluid. A common complaint of lens wearers is that they often experience symptoms of dry eye whilst wearing lenses. This sensation is often heightened towards the end of the day. Through the course of this study, various analytical techniques have been utilised including one dimensional electrophoresis and Western Blotting to study the protein profiles of tear samples. By studying the tears of non-contact lens wearers, it was possible to analyse what could be considered normal, healthy, individuals. A clinical study was also undertaken which followed a population of individuals from the neophyte stage to one whereby they were accustomed lens wearers. Tears were monitored at regular intervals throughout the course of this study and worn contact lenses were also analysed for proteins that had been deposited both on and within the lens. Contact lenses disrupt the tear film in a physical manner by their very presence. They are also thought to cause the normal protein profile to deviate from what would be considered normal. The tear film deposits proteins and lipids onto and within the lens. The lens may therefore be depriving the tear film of certain necessary components. The ultimate aim of this thesis was to discover how, and to what extent, lenses affected tear proteins and if there were any proteins in the tear fluid that had the potential to be used as biochemical markers. Should this be achievable it may be possible to identify those individuals who were more likely to become intolerant lens wearers. This study followed the changes taking place to the tear film as an effect of wearing contact lenses. Twenty-eight patients wore two different types of silicone hydrogel lenses in both a daily wear and a continuous wear regime. The tear protein profiles of the lens-wearers were compared with a control group of non-lens wearing individuals. The considerable amount of data that was generated enabled the clearly observable changes to the four main tear proteins to be monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. Methods: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. Results: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 +/- 1.2[degrees]C vs. 0.3 +/- 0.5[degrees]C, F = 20.533, p < 0.001; NITBUT change, 4.0 +/- 2.3 seconds vs. 0.4 +/- 1.7 seconds, p < 0.001; TFLLT change, 2.0 +/- 0.9 grades vs. 0.1 +/- 0.4 grades, Z = -4.035, p < 0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 +/- 0.7[degrees]C vs. 0.1 +/- 0.3[degrees]C, F = 14.247, p < 0.001; NITBUT change, 3.6 +/- 2.1 seconds vs. 0.1 +/- 1.9 seconds, p < 0.001; TFLLT change, 1.5 +/- 0.9 vs. 0.2 +/- 0.5 grades, Z = -3.835, p < 0.001). No adverse events occurred during the study. Conclusions: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. © 2013 American Academy of Optometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical changes brought about by the influence of the contact lens on the tear film are conveniently split into two categories. Firstly, the lens can remove or reduce the levels of specific components in the tear film, and secondly, the lens can augment the tear film, by stimulating the influx of new components or increasing the level of existing components. The most obvious tear film components for study in this context are lipids, proteins, mucins and electrolytes. The interactions are affected by the properties of the lens, the characteristics of the individual wearer and the wear schedule. An additional complicating factor is the fact that the lens is many times thicker than the tear film and any immobilised tear components will be more extensively exposed to oxygen and UV radiation than is the case in the absence of a lens. It is arguably the lipoidal components that are most markedly affected by lens wear, since their immobilisation on the lens surface markedly increases their susceptibility to autoxidative degradation. The limited information that is available highlights the importance of subject specificity and suggests that lipid oxidation phenomena are potentially important in contributing to the 'end of day' discomfort of symptomatic contact lens patients. It is clear that tear lipids, although regarded as relatively inert for many years, are now seen as a reactive and potentially important family of compounds in the search for understanding of contact lens-induced discomfort. The influence of the lens on tear proteins shows the greatest range of complexity. Deposition and denaturation can stimulate immune response, lower molecular weight proteins can be extensively absorbed into the lens matrix and the lens can stimulate cascade or upregulation processes leading either to the generation of additional proteins and peptides or an increase in concentration of existing components. Added to this is the stimulating influence of the lens on vascular leakage leading to the influx of plasma proteins such as albumin. The evidence from studies of mucin expression in tears is not consistent and conclusive. This is in part because sample sources, lens materials and methods of analysis vary considerably, and in some cases the study population numbers are low. Expression levels show mucin and material specificity but clear patterns of behaviour are elusive. The electrolyte composition of tears is significantly different from that of other body fluids. Sodium and potassium dominate but potassium ion concentrations in tears are much higher than in serum levels. Calcium and magnesium concentrations in tears are lower than in serum but closer to interstitial fluids. The contact lens provides the potential for increased osmolarity through enhanced evaporation and differential electrolyte concentrations between the anterior and posterior tear films. Since the changes in ocular biochemistry consequent upon contact lens wear are known to be subject-dependent - as indeed is wearer response to the lens - pre-characterisation of individual participant tear chemistry in clinical studies would enhance understanding of these complex effects. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. The purpose of this study was to evaluate the longitudinal changes in ocular physiology, tear film characteristics, and symptomatology experienced by neophyte silicone hydrogel (SiH) contact lens wearers in a daily-wear compared with a continuous-wear modality and with the different commercially available lenses over an 18-month period. Methods. Forty-five neophyte subjects were enrolled in the study and randomly assigned to wear one of two SiH materials: lotrafilcon A or balafilcon A lenses on either a daily- (LDW; BDW) or continuous-wear (LCW; BCW) basis. Additionally, a group of noncontact lens-wearing subjects (control group) was also recruited and followed over the same study period. Objective and subjective grading of ocular physiology were carried out together with tear meniscus height (TMH) and noninvasive tear breakup time (NITBUT). Subjects also subjectively rated symptoms and judgments with lens wear. After initial screening, subsequent measurements were taken after 1, 3, 6, 12, and 18 months. Results. Subjective and objective grading of ocular physiology revealed a small increase in bulbar, limbal, and palpebral hyperemia as well as corneal staining over time with both lens materials and regimes of wear (p < 0.05). No significant changes in NITBUT or TMH were found (p > 0.05). Subjective symptoms and judgment were not material- or modality-specific. Conclusions. Daily and continuous wear of SiH contact lenses induced small but statistically significant changes in ocular physiology and symptomatology. Clinical measures of tear film characteristics were unaffected by lens wear. Both materials and regimes of wear showed similar clinical performance. Long-term SiH contact lens wear is shown to be a successful option for patients. Copyright © 2006 American Academy of Optometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare graticule and image capture assessment of the lower tear film meniscus height (TMH). Methods: Lower tear film meniscus height measures were taken in the right eyes of 55 healthy subjects at two study visits separated by 6 months. Two images of the TMH were captured in each subject with a digital camera attached to a slit-lamp biomicroscope and stored in a computer for future analysis. Using the best of two images, the TMH was quantified by manually drawing a line across the tear meniscus profile, following which the TMH was measured in pixels and converted into millimetres, where one pixel corresponded to 0.0018 mm. Additionally, graticule measures were carried out by direct observation using a calibrated graticule inserted into the same slit-lamp eyepiece. The graticule was calibrated so that actual readings, in 0.03 mm increments, could be made with a 40× ocular. Results: Smaller values of TMH were found in this study compared to previous studies. TMH, as measured with the image capture technique (0.13 ± 0.04 mm), was significantly greater (by approximately 0.01 ± 0.05 mm, p = 0.03) than that measured with the graticule technique (0.12 ± 0.05 mm). No bias was found across the range sampled. Repeatability of the TMH measurements taken at two study visits showed that graticule measures were significantly different (0.02 ± 0.05 mm, p = 0.01) and highly correlated (r = 0.52, p < 0.0001), whereas image capture measures were similar (0.01 ± 0.03 mm, p = 0.16), and also highly correlated (r = 0.56, p < 0.0001). Conclusions: Although graticule and image analysis techniques showed similar mean values for TMH, the image capture technique was more repeatable than the graticule technique and this can be attributed to the higher measurement resolution of the image capture (i.e. 0.0018 mm) compared to the graticule technique (i.e. 0.03 mm). © 2006 British Contact Lens Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. METHODS: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. RESULTS: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 ± 1.2 °C vs. 0.3 ± 0.5 °C, F = 20.533, p <0.001; NITBUT change, 4.0 ± 2.3 seconds vs. 0.4 ± 1.7 seconds, p <0.001; TFLLT change, 2.0 ± 0.9 grades vs. 0.1 ± 0.4 grades, Z = -4.035, p <0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 ± 0.7 °C vs. 0.1 ± 0.3 °C, F = 14.247, p <0.001; NITBUT change, 3.6 ± 2.1 seconds vs. 0.1 ± 1.9 seconds, p <0.001; TFLLT change, 1.5 ± 0.9 vs. 0.2 ± 0.5 grades, Z = -3.835, p <0.001). No adverse events occurred during the study. CONCLUSIONS: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. Copyright © 2014 American Academy of Optometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis evaluates various aspects of videokeratoscopes, which are now becoming increasingly popular in the investigation of corneal topography. The accuracy and repeatability of these instruments has been assessed mainly using spherical surfaces, however, few studies have assessed the performance of videokeratoscopes in measuring convex aspheric surfaces. Using two videokeratoscopes, the accuracy and repeatability of measurements using twelve aspheric surfaces is determined. Overall, the accuracy and repeatability of both instruments were acceptable, however, progressively flatter surfaces introduced greater errors in measurement. The possible reasons for these errors are discussed. The corneal surface is a biological structure lubricated by the precorneal tear film. The effects of variations in the tear film on the repeatability of videokeratoscopes have not been determined in terms of peripheral corneal measurements. The repeatability of two commercially available videokeratoscopes is assessed. The repeatability is found to be dependent on the point of measurement on the corneal surface. Typically, superior and nasal meridians exhibit poorest repeatability. It is suggested that interference of the ocular adnexa is responsible for the reduced repeatability. This localised reduction in repeatability will occur for all videokeratoscopes. Further, comparison with the keratometers and videokeratoscopes used show that measurements between these instruments are not interchangeable. The final stage of this thesis evaluates the performance of new algorithms. The characteristics of a new videokeratoscope are described. This videokeratoscope is used to test the accuracy of the new algorithms for twelve aspheric surfaces. The new algorithms are accurate in determining the shape of aspheric surfaces, more so than those algorithms proposed at present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is concerned with the analysis of phospholipids in the tear film and with the synthesis of phospholipids analogous to hydrogels. The work consists of two areas. The first area is the study of the phospholipids in the tear film, their nature and fate. The use of liquid chromatography mass spectrometry determined that the concentration of phospholipids in the tear film was less than previously thought. The analysis of the tear film phospholipids continued with thin layer chromatography. This showed the presence of diacylglycerides (DAGs) in the tear film at relatively high concentrations. The activity of an enzyme, phospholipase C, was found in the tear film. It was hypothesised that the low concentration of phospholipids and high concentrations of DAG in the tear film was due to the action of this enzyme. The second area of study was the synthesis of phospholipids analogous materials for use in ocular and dermal applications for use in ocular and dermal applications.For ocular applications the synthesis involved the use of the monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) in combination with 2-hdyroxyethyl methacrylate (HEMA). Charge-balanced membranes were also synthesised using potentially anionic monomers in conjunction with cationic monomers in stoichiometrically equivalent ratios also with HEMA as a commoner. Membranes of SPDA copolymers and charge-balanced copolymers proved to have some properties suitable for ocular applications. The dermal materials consisted of one family of partially hydrated hydrogels synthesised from SPDA in combination with ionic monomers: sodium 2-(acrylamido)-2-methyl propane sulfonate and acrylic acid-bis(3-sulfopropyl)-ester, potassium salt. A second family of partially hydrated hydrogels was synthesised from N-vinyl pyrrolidone in combination with the same ionic monomers. Both of the partially hydrated hydrogels synthesised proved to have some properties suitable for use as adhesives for the skin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Published data indicate that the polar lipid content of human meibomian gland secretions (MGS) could be anything between 0.5% and 13% of the total lipid. The tear film phospholipid composition has not been studied in great detail and it has been understood that the relative proportions of lipids in MGS would be maintained in the tear film. The purpose of this work was to determine the concentration of phospholipids in the human tear film. Methods: Liquid chromatography mass spectrometry (LCMS) and thin layer chromatography (TLC) were used to determine the concentration of phospholipid in the tear film. Additionally, an Amplex Red phosphatidylcholine-specific phospholipase C (PLC) assay kit was used for determination of the activity of PLC in the tear film. Results: Phospholipids were not detected in any of the tested human tear samples with the low limit of detection being 1.3 µg/mL for TLC and 4 µg/mL for liquid chromatography mass spectrometry. TLC indicated that diacylglycerol (DAG) may be present in the tear film. PLC was in the tear film with an activity determined at approximately 15 mU/mL, equivalent to the removal of head groups from phosphatidylcholine at a rate of approximately 15 µM/min. Conclusions: This work shows that phospholipid was not detected in any of the tested human tear samples (above the lower limits of detection as described) and suggests the presence of DAG in the tear film. DAG is known to be at low concentrations in MGS. These observations indicate that PLC may play a role in modulating the tear film phospholipid concentration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More information on the biochemical interactions taking place between the tear film and the contact lens is required to further our understanding of the causative mechanisms behind the symptoms of dryness and grittiness often experienced by contact lens wearers. These symptoms can often lead to an intolerance to contact lens wear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To perform advanced analysis of the corneal deformation response to air pressure in keratoconics compared with age- and sex-matched controls. METHODS: The ocular response analyzer was used to measure the air pressure-corneal deformation relationship of 37 patients with keratoconus and 37 age (mean 36 ± 10 years)- and sex-matched controls with healthy corneas. Four repeat air pressure-corneal deformation profiles were averaged, and 42 separate parameters relating to each element of the profiles were extracted. Corneal topography and pachymetry were performed with the Orbscan II. The severity of the keratoconus was graded based on a single metric derived from anterior corneal curvatures, difference in astigmatism in each meridian, anterior best-fit sphere, and posterior best-fit sphere. RESULTS: Most of the biomechanical characteristics of keratoconic eyes were significantly different from normal eyes (P <0.001), especially during the initial corneal applanation. With increasing keratoconus severity, the cornea was thinner (r = -0.407, P <0.001), the speed of corneal concave deformation past applanation was quicker (dive; r = -0.314, P = 0.01), and the tear film index was lower (r = -0.319, P = 0.01). The variance in keratoconus severity could be accounted for by the corneal curvature and central corneal thickness (r = 0.80) with biomechanical characteristics contributing an additional 4% (total r = 0.84). The area under the receiver operating characteristic curve was 0.919 ± 0.025 for keratometry alone, 0.965 ± 0.014 with the addition of pachymetry, and 0.972 ± 0.012 combined with ocular response analyzer biomechanical parameters. CONCLUSIONS: Characteristics of the air pressure-corneal deformation profile are more affected by keratoconus than the traditionally extracted corneal hysteresis and corneal resistance factors. These biomechanical metrics slightly improved the detection and severity prediction of keratoconus above traditional keratometric and pachymetric assessment of corneal shape.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To examine the objective clinical performance of ‘comfort-enhanced’ daily disposable contact lenses over a 16-h day. Methods: Four contact lenses (Hilafilcon B, Etafilcon A Plus, Nelfilcon A and Nelfilcon A Plus) were evaluated in an investigator masked, open label trial at the end of a week’s bilateral wear. Pre-lens noninvasive tear break-up time (PL-NITBUT), tear prism height, bulbar hyperaemia and ocular surface temperature (OST) were measured with the lens in situ at 8, 12 and 16 h of wear. Results: There was no difference between how many hours the lenses types were worn each day (F = 0.90, p = 0.44). The PL-NITBUT decreased with the duration of daily lens wear (F = 32.0, p < 0.001) and was more stable with Nelfilcon A Plus (F = 6.00, p = 0.002) than with the other lenses evaluated. Bulbar blood vessels increased in coverage (F = 11.5, p < 0.001) but not overall redness (F = 0.0, p = 0.99) with the duration of daily lens wear, but there was no difference between the lenses (p > 0.05). The tear prism height decreased with the duration of daily wear (F = 27.0, p < 0.001) and differed between lenses (F = 2.9, p = 0.04). The OST decreased with the duration of lens wear (F = 119.7, p < 0.001) and was reduced by daily disposable lens wear (F = 7.88, p < 0.001), but did not differ between lenses (F = 0.88, p = 0.45). Conclusions: Objective measures of tear film indicated a difference between the lenses evaluated for PLNITBUT and tear prism height, but not for wearing time or bulbar conjunctival hyperaemia. Therefore clinical benefits of daily disposable ‘comfort enhancing’ contact lenses can be measured, but challenges remain in producing contact lenses that do not compromise anterior eye physiology over the whole day. 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.