19 resultados para NITRIC-OXIDE PROTECTS
Resumo:
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Resumo:
Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.
Resumo:
This study concerns the nature of nitric oxide synthase (NOS) and the role of nitric oxide (NO) in the rat gastrointestinal tract. The major objectives were (i) to characterise NOS isoforms in the gastric glandular mucosa, (ii) to localise NOS isoforms in the rat gastric glandular mucosa, (iii) to investigate the role of NO in carbachol-stimulated gastric mucus secretion, (iv) to investigate the nature of NOS and small intestine. Immunoblotting was performed using polyclonal antisera raised against two peptides found in the rat brain NOS sequence and commercial monoclonal antibodies directed against neuronal and endothelial isoforms of NOS. A160kDa band was detected in brain and gastric mucosal samples with antibodies and antisera directed against neuronal NOS sequences, and a 140kDa band was detected in gastric mucosal samples using an anti-endothelial NOS antibody. An intense 160kDa neuronal NOS band was detected in a high-density fraction of gastric mucosal cells separated on a Percoll gradient. Detection of neuronal NOS by a carboxyl-terminal antiserum in samples of brain, but not of gastric mucosa, could be blocked by the peptide (20g/ml) against which the antibody was raised. After affinity purification, recognition of gastric mucosal NOS was blocked by peptide. Particulate neuronal NOS was found in the brain by immunoblotting while 94% of gastric mucosal enzyme was soluble. Gastric mucosal endothelial NOS was 95% particulate. 95% of NOS activity in the gastric mucosa was due to neuronal NOS. Paraformaldehyde- and acetone-fixed gastric mucosal sections were subject to immunocytochemistry using the above antibodies. Neuronal NOS was localised to the surface mucosal epithelial cells while endothelial NOS was associated with microvessels at the base of the mucosa and to larger vessels in the submucosa. Intragastric administration of carbachol or 16, 16-dimethyl prostaglandin E2 increased the thickness of the rat gastric mucus layer. The NOS inhibitor NG-nitro-L-arginine methyl ester dose-dependently, and selectively, prevented the stimulatory effect of carbachol. Ca2+-independent NOS activity in rat ileal, jejunal and colonic muscle was increased after LPS induction. Ca2+-dependent activity was not affected. Distribution of inducible NOS protein paralleled Ca2+ -independent activity. LPS treatment did not affect the content of neuronal NOS in colonic muscle.
Resumo:
Nitric oxide is a free-radical gas which can exert both protective and damaging effects. The objectives of the thesis were: (i) to investigate arginine metabolism in isolated rat gastric mucosal cells, (ii) to investigate the role of NO in the induction of ornithine decarboxylase in the rat gastric mucosa damaged by hypertonic saline in vivo, (iii) to expose primary cultures of guinea-pig gastric mucosal cells to oxidative challenge and an NO donor, and to investigate the response in terms of heat shock protein 72 (HSP 72) induction, and (iv) to investigate the induction of iNOS and the role of potential modulators of activity in gastric cell lines. Isolated rat gastric mucosal cells converted exogenous arginine to ornithine and citrulline. This metabolism of arginine was not affected by a range of NO synthase inhibitors, but was reduced by the arginase inhibitors NG-hydroxy-L-arginine and L-ornithine. Thus, the predominant pathway of arginine metabolism involves arginase and ornithine transcarbamoylase, not NO synthase. Pretreatment of rats with NG-nitro-L-arginine promoted activation of ornithine decarboxylase after intragastric hypertonic saline, but did not increase acid phosphatase release (damage). NO may therefore restrict activation of ornithine decarboxylase in response to damage. Exposure of primary cultures of guinea-pig gastric mucosal cells to S-nitroso-N-acetyl-penicillamine (SNAP) caused a concentration dependent induction of HSP 72, which was inhibited by an NO scavenger and blockade of transcription. The effect of SNAP was enhanced by decreasing the intracellular reduced thiol content with diethyl maleate, which itself also induced HSP 72 formation. Substantial amounts of NO may induce defensive responses in cells. Induction of iNOS was not detected in HGT-1 or AGS cells exposed to cytokines. Conclusions An arginase pathway may restrict availability of arginine for NO synthase in gastric mucosa or may be present to supply ornithine for polyamine synthesis. NO may modulate the response to damage of the stomach epithelium in vivo. Exogenous NO may induce a defensive response in gastric mucosal cells.
Resumo:
Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.
Resumo:
Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.
Resumo:
Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated.
Angiopoietin-2 confers Atheroprotection in apoE-/- mice by inhibiting LDL oxidation via nitric oxide
Resumo:
Atherosclerosis is promoted by a combination of hypercholesterolemia and vascular inflammation. The function of Angiopoietin (Ang)-2, a key regulator of angiogenesis, in the maintenance of large vessels is unknown. A single systemic administration of Ang-2 adenovirus (AdAng-2) to apoE-/- mice fed a Western diet significantly reduced atherosclerotic lesion size 8 40%) and oxidized LDL and macrophage content of the plaques. These beneficial effects were abolished by the inhibition of nitric oxide synthase (NOS). In endothelial cells, endothelial NOS activation per se inhibited LDL oxidation and Ang-2 stimulated NO release in a Tie2-dependent manner to decrease LDL oxidation. These findings demonstrate a novel atheroprotective role for Ang-2 when endothelial cell function is compromised and suggest that growth factors, which stimulate NO release without inducing inflammation, could offer atheroprotection.
Resumo:
The effect of nitric oxide (NO) on apoptosis in the gastrointestinal mucosa was investigated. Experiments involved long-term exposure of rat gastric mucosal cells in vitro to exogenous NO delivered from the NO, donor S-nitroso-N-acetyl-penicillamine, and the effect of intravenous administration of lipopolysaccharide in vivo, in the presence and absence of the selective inhibitor of inducible NO synthase N-(3-(aminomethyl)benzyl) acetamidine (1400 W). S-nitroso-N-acetyl-penicillamine produced a dose-related inhibition of caspase 3-like activity and DNA fragmentation in isolated gastric mucosal cells. Caspase 3-like activity and DNA fragmentation in gastric, ileal and colonic mucosa were increased both 5 and 24 h after injection of lipopolysaccharide (3 mg/kg, i.v.) to rats in vivo. Administration of 1400 W (5 mg/kg, i.v.) immediately after lipopolysaccharide enhanced caspase 3-like activity and DNA fragmentation above that found with lipopolysaccharide alone. In conclusion, data obtained both in vitro and in vivo suggest that NO exerts an anti-apoptotic effect on rat gastrointestinal mucosal cells. © 2001 Elsevier Science B.V.
Resumo:
INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.
Resumo:
Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.
Resumo:
Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions.