47 resultados para Myopic addiction
Resumo:
Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.
Resumo:
Purpose: A retrospective study of longitudinal case histories, undertaken to establish the clinical and statistical characteristics of unilateral myopic anisometropia (UMA) amongst the juvenile and adolescent population at an optometric practice, is reported. UMA was defined as that specific refractive state where an unequivocally myopic eye is paired with a 'piano' [spherical equivalent refraction, (SER) = ±0.25 Dioptres (D)] companion eye. Methods: The clinical records of all patients aged <19 years on file at an established independent optometric practice were categorised as 'myopic' (SER ≤-0.50 D), 'hypermetropie' (≥+0.75 D) or 'emmetropic' (≥-0.37≤+0.62 D). Subsequently all juvenile patients matching the UMA criterion, together with a case-matched group of bilaterally myopic individuals, were selected as the comparative study populations. Results: A total of 14.4% (n = 21 of 146) of the juvenile myopic case histories were identified as cases of UMA. More than half of these UMA cases emerged between the ages of 11.5 and 13.5 years. There was a marked female gender bias. The linear gradient of the age-related mean refractive trend in the myopic eye of the UMA population was not statistically significantly different (p > 0.1) to that fitted to the ametropic progression recorded in either eye of the case-matched population of young bilateral myopes; uniquely the slope associated with the companion eye of UMA cases was statistically significantly (p < 0.025) less steep. Compared with bilateral myopes fewer cases of UMA required a refractive correction to relieve visual or asthenopic symptoms, and this initial correction was dispensed on average 1 year later (at age 12.7 years) in UMA patients. Conclusions: Individuals identified as demonstrating clinically-defined UMA can be considered as distinct but functionally normal cases on the continuum of human refractive error. However, any unilaterally-acting determining factor(s) underlying the genesis of the condition remain obscure. © 2004 The College of Optometrists.
Resumo:
Purpose: Changes in refractive error are well documented over the typical human lifespan. However, a relatively neglected period of investigation appears to be during the late fourth decade; this is at the incipient phase of presbyopia (IP), where the amplitude of accommodation is much reduced and approaches the level where a first reading addition is anticipated. Significantly, informal clinical observation has suggested a low incidence of an unexpected abrupt increase in myopia during IP. Methods: We investigated this alleged myopic shift retrospectively by mapping the longitudinal refraction histories of normally-sighted 35-44years old British White patients previously examined in routine optometric practice. The refractive trends in the right eyes of healthy myopic subjects (spherical equivalent refraction, SER =-0.50D: N=39) were analysed relative to that point at which a first near dioptric addition was considered to be clinically useful. Results: A refractive change was evident in some subjects during IP; viz, an abrupt increase in myopic SER of between -0.50 and -0.75D. These individuals (N=8) represented 20% of the study population of myopic incipient presbyopes. Beyond the pivotal point of the first near addition the longitudinal refraction stabilized in these subjects. In contrast, and as the extent of the available longitudinal data would permit, the remaining myopic eyes maintained an approximately stable refractive trend throughout IP and beyond. Conclusions: The anatomical or physiological basis of this specific late (non-developmental) abrupt myopic refractive change is an intriguing issue. Axial (vitreous chamber elongation), corneal (contour) and lenticular (profile and index) power bases, alone or in concert, might be considered candidates for this hitherto unexplored refractive phenomenon. Although necessarily obtained under conventional conditions of central (0deg) fixation, our data might also be a reflection of the recent recognition of the possible influence of the peripheral refraction upon the axial error. Consideration of this material provides an impetus for further research, including ocular biometry, a reappraisal of ciliary zonular functional anatomy, renewed investigation of the AC/A ratio, and the extent of a centripetal refractive influence on myopia development. © 2011 The College of Optometrists.
Resumo:
Purpose: Evidence exists for an additional inhibitory accommodative control system mediated by the sympathetic branch of the autonomic nervous system (ANS). This work aims to show the relative prevalence of sympathetic inhibition in young emmetropic and myopic adults, and to evaluate the effect of sympathetic facility on accommodative and oculomotor function. Methods: Profiling of ciliary muscle innervation was carried out in 58 young adult subjects (30 emmetropes, 14 early onset myopes, 14 late onset myopes) by examining post-task open-loop accommodation responses, recorded continuously by a modified open-view infrared optometer. Measurements of amplitude of accommodation, tonic accommodation, accommodative lag at near, AC/A ratio, and heterophoria at distance and near were made to establish a profile of oculomotor function. Results: Evidence of sympathetic inhibitory facility in ciliary smooth muscle was observed in 27% of emmetropes, 21% of early-onset myopes and 29% of late-onset myopes. Twenty-six percent of all subjects demonstrated access to sympathetic facility. Closed-loop oculomotor function did not differ significantly between subjects with sympathetic facility, and those with sympathetic deficit. Conclusions: Emmetropic and myopic groups cannot be distinguished in terms of the relative proportions having access to sympathetic inhibition. Presence of sympathetic innervation does not have a significant effect on accommodative function under closed-loop viewing conditions. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
To review the literature on epidemiology, clinical features, diagnostic imaging, natural history, management, therapeutic approaches, and prognosis of myopic foveoschisis. A systematic Pubmed search was conducted using search terms: myopia, myopic, staphyloma, foveoschisis, and myopic foveoschisis. The evidence base for each section was organised and reviewed. Where possible an authors' interpretation or conclusion is provided for each section. The term myopic foveoschisis was first coined in 1999. It is associated with posterior staphyloma in high myopia, and is often asymptomatic initially but progresses slowly, leading to loss of central vision from foveal detachment or macular hole formation. Optical coherence tomography is used to diagnose the splitting of the neural retina into a thicker inner layer and a thinner outer layer, but compound variants of the splits have been identified. Vitrectomy with an internal limiting membrane peel and gas tamponade is the preferred approach for eyes with vision decline. There has been a surge of new information on myopic foveoschisis. Advances in optical coherence tomography will continually improve our understanding of the pathogenesis of retinal splitting, and the mechanisms that lead to macular damage and visual loss. Currently, there is a good level of consensus that surgical intervention should be considered when there is progressive visual decline from myopic foveoschisis.
Resumo:
Background: The aim was to assess the potential association between entrance pupil location relative to the coaxially sighted corneal light reflex (CSCLR) and the progression of myopia in children fitted with orthokeratology (OK) contact lenses. Additionally, whether coma aberration induced by decentration of the entrance pupil centre relative to the CSCLR, as well as following OK treatment, is correlated with the progression of myopia, was also investigated. Methods: Twenty-nine subjects aged six to 12years and with myopia of -0.75 to -4.00 DS and astigmatism up to 1.00DC were fitted with OK contact lenses. Measurements of axial length and corneal topography were taken at six-month intervals over a two-year period. Additionally, baseline and three-month topographic outputs were taken as representative of the pre- and post-orthokeratology treatment status. Pupil centration relative to the CSCLR and magnitude of associated corneal coma were derived from corneal topographic data at baseline and after three months of lens wear. Results: The centre of the entrance pupil was located superio-temporally to the CSCLR both pre- (0.09±0.14 and -0.10±0.15mm, respectively) and post-orthokeratology (0.12±0.18 and -0.09±0.15mm, respectively) (p>0.05). Entrance pupil location pre- and post-orthokeratology lens wear was not significantly associated with the two-year change in axial length (p>0.05). Significantly greater coma was found at the entrance pupil centre compared with CSCLR both pre- and post-orthokeratology lens wear (both p<0.05). A significant increase in vertical coma was found with OK lens wear compared to baseline (p<0.001) but total root mean square (RMS) coma was not associated with the change in axial length (all p>0.05). Conclusion: Entrance pupil location relative to the CSCLR was not significantly affected by either OK lens wear or an increase in axial length. Greater magnitude coma aberrations found at the entrance pupil centre in comparison to the CSCLR might be attributed to centration of orthokeratological treatments at the CSCLR.
Resumo:
Full text: We thank Tsilimbaris et al1 for their comments on the appropriateness of the term ‘myopic foveoschisis’ to describe the condition that is characterized by the separation of neural retina layers associated with high myopia and posterior staphyloma. They have proposed the term ‘myopic ectatic retinopathy’ as a more literal and functionally more accurate descriptor of the condition to avoid the use of the word ‘schisis’, which may be misleading because it is also used to describe other conditions where there is separation of neural retina layers without the presence of staphyloma.2 Using the word ‘ectatic’ for this condition would imply that we are fairly certain about the pathogenesis and mechanistic factors that underlie its development and progression. However, this is not the case, unfortunately, as our review of the literature has shown. There are several theories ranging from vitreous traction to sclerosing changes of retinal vessels to progression of staphylomas as possible etiological factors. Therefore, it is likely to be multifactorial in nature—hence the success reported with different procedures that address either the vitreous traction factor using vitrectomy, peel plus tamponade or the scleral ectasia factor using posterior buckling techniques. In the absence of a good understanding of underlying pathogenesis, it is probably best to use purely descriptive names rather than mechanistic terms. The use of descriptive terms, even though similar, do not necessarily cause confusion as long as they are widely accepted as differentiating terminology, for example, postoperative pseudophakic cystoid macular edema (Irvine–Gass syndrome) vs cystoid macular edema associated with posterior uveitis in a phakic patient. The introduction of too many mechanistic or pathogenetic terms in the absence of clear understating of etiology can in fact cause more confusion, for example, serous chorioretinopathy vs central serous retinopathy vs serous choroidopathy. The confinement to broad descriptive terms can enhance communication and reduce confusion without committing to any presumption about etiology until it is better understood. This approach is probably best illustrated by the recent advances in the understanding of mactel21, a condition initially described and classified, using descriptive nomenclature, by Don Gass as bilateral, idiopathic acquired juxtafoveolar telangiectasis (Group2A) and as distinctly different from unilateral, congenital parafoveolar telangiectasis (Group 1A; Gass,3 pp 504–506 vs 127–128). Finally, it is worthy to note that for myopic foveoschisis associated with a staphyloma that is associated with outer layer macular detachment, Don Gass also descriptively included the additional observation (before the advent of OCT) that the retinal profile was concave rather than convex in shape, thereby differentiating it from rhegmatogenous detachments with recruitment of subretinal fluid that is associated with posteriorly located breaks and macular holes in myopic eyes. References 1.Tsilimbaris MK, Vavvas DG, Bechrakis NE. Myopic foveoschisis: an ectatic retinopathy, not aschisis. Eye 2016; 30: 328–329. 2.Powner MB, Gillies MC, Tretiach M, Scott A, Guymer RH, Hageman GS et al. Perifoveal müller cell depletion in a case of macular telangiectasia type 2. Ophthalmology 2010; 117(12): 2407–2416. 3.Gass DM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment, 4th edn. Mosby-Yearbook: St. Louis, 1997.
Resumo:
Editorial
Resumo:
Product design and sourcing decisions are among the most difficult and important of all decisions facing multinational manufacturing companies, yet associated decision support and evaluation systems tend to be myopic in nature. Design for manufacture and assembly techniques, for example, generally focuses on manufacturing capability and ignores capacity although both should be considered. Similarly, most modelling and evaluation tools available to examine the performance of various solution and improvement techniques have a narrower scope than desired. A unique collaboration, funded by the US National Science Foundation, between researchers in the USA and the UK currently addresses these problems. This paper describes a technique known as Design For the Existing Environment (DFEE) and an holistic evaluation system based on enterprise simulation that was used to demonstrate the business benefits of DFEE applied in a simple product development and manufacturing case study. A project that will extend these techniques to evaluate global product sourcing strategies is described along with the practical difficulties of building an enterprise simulation on the scale and detail required.
Resumo:
The myopic eye is generally considered to be a vulnerable eye and, at levels greater than 6 D, one that is especially susceptible to a range of ocular pathologies. There is concern therefore that the prevalence of myopia in young adolescent eyes has increased substantially over recent decades and is now approaching 10-25% and 60-80%, respectively, in industrialized societies of the West and East. Whereas it is clear that the major structural correlate of myopia is longitudinal elongation of the posterior vitreous chamber, other potential correlates include profiles of lenticular and corneal power, the relationship between longitudinal and transverse vitreous chamber dimensions and ocular volume. The most potent predictors for juvenile-onset myopia continue to be a refractive error ≤+0.50 D at 5 years of age and family history. Significant and continuing progress is being made on the genetic characteristics of high myopia with at least four chromosomes currently identified. Twin studies and genetic modelling have computed a heritability index of at least 80% across the whole ametropic continuum. The high index does not, however, preclude an environmental precursor, sustained near work with high cognitive demand being the most likely. The significance of associations between accommodation, oculomotor dysfunction and human myopia is equivocal despite animal models that have demonstrated that sustained hyperopic defocus can induce vitreous chamber growth. Recent optical and pharmaceutical approaches to the reduction of myopia progression in children are likely precedents for future research, for example progressive addition spectacle lens trials and the use of the topical MI muscarinic antagonist pirenzepine.
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
AIM: The aim of the study was to determine, objectively and non-invasively, whether changes in accommodative demand modify differentially the peripheral refraction in emmetropic and myopic human eyes. METHODS: Forty subjects (19 male, 21 female) aged 20-30 years (mean 22.7 (SD 2.8) years), 21 emmetropes (mean spherical equivalent refractive error (MSE) -0.13 (SD 0.29) D) and 19 myopes (MSE -2.95 (SD 1.76) D) participated in the study. Ametropia was corrected with soft contact lenses (etafilcon A, 58% water content). Subjects viewed monocularly a stationary, high contrast (85%) Maltese cross at 0.0, 1.0, 2.0 and 3.0 D of accommodative demand and at 0, 10, 20 and 30 degrees field angle (nasal and temporal) through a +3.0 D Badal optical system. Static recordings of the accommodation response were obtained for each accommodative level, at each field angle, with an objective, open-view, infrared optometer. RESULTS: Peripheral mean spherical equivalent (M) data showed that the emmetropic cohort exhibited relative myopic shifts into the periphery, while the myopic group showed hypermetropic shifts. Increasing accommodative demand did not alter the peripheral refractive profile in either the temporal (p = 0.25) or nasal (p = 0.07) periphery with no differential accommodative effect between refractive groups in either the temporal (p = 0.77) or nasal (p = 0.73) field. Significant shifts in the J(0) astigmatic component were seen in the temporal (p<0.0005) and nasal (p<0.0005) fields with increasing eccentricity. Interaction effects between eccentricity and accommodative demand illustrated that increasing accommodative demand significantly altered the peripheral refractive profile in the temporal J(0) astigmatic component (p<0.0005). The nasal periphery, however, failed to show such an effect (p = 0.65). CONCLUSIONS: Alterations in peripheral refraction augmented by changes in ocular accommodation are relatively unaffected by refractive error for young, healthy human eyes.
Resumo:
PURPOSE. It is well documented that myopia is associated with an increase in axial length or, more specifically, in vitreous chamber depth. Whether the transverse dimensions of the eye also increase in myopia is relevant to further understanding of its development. METHODS. The posterior retinal surface was localized in two-dimensional space in both eyes of young adult white and Taiwanese-Chinese iso- and anisomyopes (N = 56), from measured keratometry, A-scan ultrasonography, and central and peripheral refraction (±35°) data, with the aid of a computer modeling program designed for this purpose. Anisomyopes had 2 D or more interocular difference in their refractive errors, with mean values in their more myopic eyes of -5.57 D and in their less myopic eyes of -3.25 D, similar to the means of the two isomyopic groups. The derived retinal contours for the more and less myopic eyes were compared by way of investigating ocular shape changes that accompany myopia, in the posterior region of the vitreous chamber. The presence and size of optic disc crescents were also investigated as an index of retinal stretching in myopia. RESULTS. Relative to the less myopic eyes of anisometropic subjects, the more myopic eyes were more elongated and also distorted into a more prolate shape in both the white and Chinese groups. However, the Chinese eyes showed a greater and more uniform relative expansion of the posterior retinal surface in their more myopic eyes, and this was associated with larger optic disc crescents. The changes in the eyes of whites displayed a nasal-temporal axial asymmetry, reflecting greater enlargement of the nasal retinal sector. CONCLUSIONS. Myopia is associated with increased axial length and a prolate shape. This prolate shape is consistent with the proposed idea that axial and transverse dimensions of the eye are regulated differently. The observations that ocular shape changes are larger but more symmetrical in Chinese eyes than in eyes of whites warrant further investigation.
Resumo:
Ocular dimensions are widely recognised as key variants of refractive error. Previously, accurate depiction of eye shape in vivo was largely restricted by limitations in the imaging techniques available. This thesis describes unique applications of the recently introduced 3-dimensional magnetic resonance imaging (MRI) approach to evaluate human eye shape in a group of young adult subjects (n=76) with a range of ametropia (MSE= -19.76 to +4.38D). Specific MRI derived parameters of ocular shape are then correlated with measures of visual function. Key findings include the significant homogeneity of ocular volume in the anterior eye for a range of refractive errors, whilst significant volume changes occur in the posterior eye as a function of ametropia. Anterior vs. posterior eye differences have also been shown through evaluations of equivalent spherical radius; the posterior 25% cap of the eye was shown to be relatively steeper in myopes compared to emmetropes. Further analyses showed differences in retinal quadrant profiles; assessments of the maximum distance from the retinal surface to the presumed visual axes showed exaggerated growth of the temporal quadrant in myopic eyes. Comparisons of retinal contour values derived from transformation of peripheral refraction data were made with MRI; flatter retinal curvature values were noted when using the MRI technique. A distinctive feature of this work is the evaluation of the relationship between ocular structure and visual function. Multiple aspects of visual function were evaluated through several vehicles: multifocal electroretinogram testing, visual field sensitivity testing, and the use of psychophysical methods to determine ganglion cell density. The results show that many quadrantic structural and functional variations exist. In general, the data could not demonstrate a significant correlation between visual function and associated measures of ocular conformation either within or between myopic and emmetropic groups.
Resumo:
The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field.