19 resultados para MELANOTROPIC PEPTIDES
Resumo:
The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.
Resumo:
1. Structure-activity relationships for the binding of human α-calcitonin gene-related peptide 8-37 (hαCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (hαCGRP stimulation of adenylate cyclase). 2. On SK-N-MC cells the potency order was hαCGRP8-37 > hαCGRP19-37 = AC187 > rat amylin8-37 > hα[Tyr0]-CGRP28-37 (apparent pKBS of 7.49 ± 0.25, 5.89 ± 0.20, 6.18 ± 0.19, 5.85 ± 0.19 and 5.25 ± 0.07). The SK-N-MC receptor appeared CGRP1-like. 3. On Col 29 cells, only hαCGRP8-37 of the above compounds was able to antagonize the actions of hαCGRP (apparent pKB = 6.48 ± 0.28). Its receptor appeared CGRP2-like. 4. hα[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal α-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than hαCGRP8-37. 5. On SK-N-MC cells, hαCGRP(8-18, 28-37) (M433) and mastoparan-hαCGRP28-37 (M432) had apparent pKBS of 6.64 ± 0.16 and 6.42 ± 0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. 6. M433 was almost as potent as hαCGRP8-37 on Col 29 cells (apparent pKB = 6.17 ± 0.20). Other antagonists were inactive.
Resumo:
In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
Resumo:
Imaging using MS has the potential to deliver highly parallel, multiplexed data on the specific localization of molecular ions in tissue samples directly, and to measure and map the variations of these ions during development and disease progression or treatment. There is an intrinsic potential to be able to identify the biomarkers in the same experiment, or by relatively simple extension of the technique. Unlike many other imaging techniques, no a priori knowledge of the markers being sought is necessary. This review concentrates on the use of MALDI-MS for MS imaging (MSI) of proteins and peptides, with an emphasis on mammalian tissue. We discuss the methodologies used, their potential limitations, overall experimental considerations and progress that has been made towards establishing MALDI-MSI as a routine technique for the spatially resolved measurement of peptides and proteins. As well as determining the local abundance of individual molecular ions, there is the potential to determine their identity within the same experiment using relatively simple extensions of the basic techniques. In this way MSI offers an important opportunity for biomarker discovery and identification.
Resumo:
Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity.
Resumo:
An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.
Resumo:
This thesis concerns the mechanism through which enteral delivery of glucose results in a larger insulin response than an equivalent parenteral glucose load. Preliminary studies in which mice received a glucose solution either intragastrically or intraperitoneally confirmed this phenomenon. An important regulatory system in this respect is the entero-insular axis, through which insulin secretion is influenced by neural and endocrine communication between the gastrointestinal tract and the pancreatic islets of Langerhans. Using an in vitro system involving static incubation of isolated (by collagenase digestion) islets of Langerhans, the effect of a variety of gastrointestinal peptides on the secretion of the four main islet hormones, namely insulin, glucagon, somatostatin and pancreatic polypeptide, was studied. The gastrointestinal peptides investigated in this study were the secretin family, comprising secretin, glucagon, gastric inhibitory polypeptide (GIP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI) and growth hormone releasing factor (GRF). Gastrin releasing peptide (GRP) was also studied. The results showed that insulin release was stimulated by all peptides studied except PHI, glucagon release was stimulated by all peptides tested, except GRF which suppressed glucagon release, somatostatin release was stimulated by GIP and GRF but suppressed by VIP, PHI, glucagon and secretin, and PP release was stimulated by GIP and GRF, but suppressed by PHI. The insulinotropic effect of GRP was investigated further. A perifusion system was used to examine the time-course of insulin release from isolated islets after stimulation with GRP. GRP was shown to be insulinotropic only in the presence of physiologically elevated glucose concentrations and both first and second phases of insulin release were augmented. There was no effect at substimulatory or very high glucose concentrations. Studies using a cultured insulin-secreting islet cell line, the RINm5F cell line, were undertaken to elucidate the intracellular mechanism of action of GRP. This peptide did not enhance insulin release via an augmentation of glucose metabolism, or via the adenylate cyclase/cyclic AMP secondary messenger system. The pattern of changes of cytosolic free calcium in response to GRP, which involved both mobilization of intracellular stores and an influx of extracellular calcium, suggested the involvement of phosphatidylinositol bisphosphate breakdown as a mediator of the effect of GRP on insulin secretion.
Resumo:
BACKGROUND & AIMS: The transferrin receptor (CD71) is up-regulated in duodenal biopsy samples from patients with active celiac disease and promotes retrotransport of secretory immunolglobulin A (SIgA)-gliadin complexes. We studied intestinal epithelial cell lines that overexpress CD71 to determine how interactions between SIgA and CD71 promote transepithelial transport of gliadin peptides. METHODS: We analyzed duodenal biopsy specimens from 8 adults and 1 child with active celiac disease. Caco-2 and HT29-19A epithelial cell lines were transfected with fluorescence-labeled small interfering RNAs against CD71. Interactions among IgA, CD71, and transglutaminase 2 (Tgase2) were analyzed by flow cytometry, immunoprecipitation, and confocal microscopy. Transcytosis of SIgACD71 complexes and intestinal permeability to the gliadin 3H-p3149 peptide were analyzed in polarized monolayers of Caco-2 cells. RESULTS: Using fluorescence resonance energy transfer and in situ proximity ligation assays, we observed physical interactions between SIgA and CD71 or CD71 and Tgase2 at the apical surface of enterocytes in biopsy samples and monolayers of Caco-2 cells. CD71 and Tgase2 were co-precipitated with SIgA, bound to the surface of Caco-2 cells. SIgACD71 complexes were internalized and localized in early endosomes and recycling compartments but not in lysosomes. In the presence of celiac IgA or SIgA against p3149, transport of intact 3H-p3149 increased significantly across Caco-2 monolayers; this transport was inhibited by soluble CD71 or Tgase2 inhibitors. CONCLUSIONS: Upon binding to apical CD71, SIgA (with or without gliadin peptides) enters a recycling pathway and avoids lysosomal degradation; this process allows apicalbasal transcytosis of bound peptides. This mechanism is facilitated by Tgase2 and might be involved in the pathogenesis of celiac disease.
Resumo:
Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Saturation mutagenesis is a powerful tool in modern protein engineering. This can allow the analysis of potential new properties thus allowing key residues within a protein to be targeted and randomised. However, the creation of large libraries using conventional saturation mutagenesis with degenerate codons (NNN or NNK) has inherent redundancy and disparities in residue representation. In this we describe the combination of ProxiMAX randomisation and CIS display for the use of generating novel peptides. Unlike other methods ProxiMAX randomisation does not require any intricate chemistry but simply utilises synthetic DNA and molecular biology techniques. Designed ‘MAX’ oligonucleotides were ligated, amplified and digested in an iterative cycle. Results show that randomised ‘MAX’ codons can be added sequentially to the base sequence creating a series of randomised non-degenerate codons that can subsequently be inserted into a gene. CIS display (Isogencia, UK) is an in vitro DNA based screening method that creates a genotype to phenotype link between a peptide and the nucleic acid that encodes it. The use of straight forward in vitro transcription/translation and other molecular biology techniques permits ease of use along with flexibility making it a potent screening technique. Using ProxiMAX randomisation in combination with CIS display, the aim is to produce randomised anti-nerve growth factor (NGF) and calcitonin gene-related (CGRP) peptides to demonstrate the high-throughput nature of this combination.
Resumo:
The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods. SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.
Resumo:
There is growing evidence that cholecystokinin (CCK) affects growth and differentiation of anterior pituitary cells, via the CCK-B receptor. The possibility of an autocrine / paracrine role for CCK to modulate hormone secretion in human pituitary tumour cells is demonstrated here by RT-PCR and direct sequencing. In support of this conclusion, a neutralising antibody against the CCK peptide exhibited a dose dependent inhibition of hormone secretion by functionless pituitary adenomas. Total RNA was extracted from human pituitary adenomas, reverse transcribed into cDNA and subjected to PCR using primers specific for the gene for CCK, CCK-A and CCK-B receptors. PCR bands of the predicted length were observed in all tumours using human CCK gene and CCK-B receptor primers. Restriction digestion and direct sequence analysis provided further evidence that they represented both the human CCK peptide along with the CCK-A and/B receptor mRNA. CCK-33 and CCK octapeptide sulphate (CCK-8s) both powerfully stimulated phosphatidylinositol hydrolysis, providing evidence for functional activity of the CCK-A and/B receptors. A direct stimulatory effect of CCK peptides on both LH and FSH secretion is reported for the first time, whereas stimulatory effects on GH were blocked by antagonists to CCK. These results may indicate an autocrine role for CCK in the functioning and perhaps development of human pituitary tumours. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart.
Resumo:
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted.