16 resultados para Lipid and glucose levels
Resumo:
Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p<0.0005) and between groups (p<0.0005). However, the refractive error components and ocular aberrations were not found to alter significantly over the day in either the diabetic patients or the control subjects (p>0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients. © 2012 Huntjens et al.
Resumo:
Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.
Resumo:
Aim: To evaluate OneTouch® Verio™ test strip performance at hypoglycaemic blood glucose (BG) levels (<3.9mmol/L [<70mg/dL]) at seven clinical studies. Methods: Trained clinical staff performed duplicate capillary BG monitoring system tests on 700 individuals with type 1 and type 2 diabetes using blood from a single fingerstick lancing. BG reference values were obtained using a YSI 2300 STAT™ Glucose Analyzer. The number and percentage of BG values within ±0.83. mmol/L (±15. mg/dL) and ±0.56. mmol/L (±10. mg/dL) were calculated at BG concentrations of <3.9. mmol/L (<70. mg/dL), <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL). Results: At BG concentrations <3.9. mmol/L (<70. mg/dL), 674/674 (100%) of meter results were within ±0.83. mmol/L (±15. mg/dL) and 666/674 (98.8%) were within ±0.56. mmol/L (±10. mg/dL) of reference values. At BG concentrations <3.3. mmol/L (<60. mg/dL), and <2.8. mmol/L (<50. mg/dL), 358/358 (100%) and 270/270 (100%) were within ±0.56. mmol/L (±10. mg/dL) of reference values, respectively. Conclusion: In this analysis of data from seven independent studies, OneTouch Verio test strips provide highly accurate results at hypoglycaemic BG levels. © 2012 Elsevier Ireland Ltd.
Resumo:
Background and Objectives: Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM), applicable across the population. To implement a successful strategy it is essential to understand the impact of dietary modulation on the postprandial rise in blood glucose concentrations. Methods: Using the highest quality data, a systematic and comprehensive literature review was undertaken. Included in this review were the major macronutrients (carbohydrate, pro-tein, fat), micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods such as low-calorie sweeteners, vinegar and alcohol. Results: The strongest corroboration of efficacy for improving glucose homeostasis was for insoluble and moderately fermentable cereal-based fiber and mono-unsaturated fatty acids as replacement of saturated fat. Postprandial glycaemia was decreased by intake of viscous soluble fiber and the predominant mechanism of action was considered to be by delaying absorption of co-ingested carbohydrates. There was weaker but substantial evidence that certain phytochemical-rich foods were likely to be effective. This may be associated with the su-ggestion that the gut microbiota plays an important role in me-tabolic regulation, which includes provision of phytochemical and other metabolites. Conclusions: Based on the evidence, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. This suggests that employing a dietary regimen to attenuate the postprandial rise in blood glucose levels along with previously identified targets (reducing excess body weight and an increase in physical activity) will benefit the health of the population and limit the increasing worldwide incidence of T2D.
Resumo:
Background: To investigate factors responsible for muscle loss in cachexia changes in nucleic acid and protein levels have been determined and compared with those induced by a tumour-produced cachectic factor, proteolysis-inducing factor (PIF). Materials and Methods: Mice were transplanted with the MAC16 tumour, while non-tumour bearing mice received PIF (1.5 mg/kg; i.v.) over a 24 h period. Results: There was an exponential decrease in RNA and protein in gastrocnemius muscle with weight loss without an effect on the DNA content. Levels of myosin followed the decrease in total protein, while actin levels remained constant. There was also a significant loss of protein from soleus muscle and spleen, but not from heart, liver and kidney. PIF also produced a significant loss of RNA and protein in spleen and reduced the protein content of soleus muscle. Conclusion: This suggests that PIF may be responsible for changes in protein and RNA content of tissues with the development of cachexia.
Resumo:
Parmelia conspersa (Ehrh. Ex Ach.)Ach. is a foliose lichen found more frequently on south facing compared with north facing rock surfaces in South Gwynedd, Wales, UK. The radial growth of thalli of P. conspersa from a north and a south facing rock surface was measured in situ at intervals of two months for 1 yr during 1990/1991. Mean annual radial growth rates were greater on the south compared with the north facing rock surface. In addition, the pattern of radial growth varied during the year with maximum growth recorded in the Feb/Mar. period especially on the south facing rock surface. The levels of ribitol, arabitol and mannitol were measured in individual lobes of P. conspersa collected from the same rock surfaces on 4 days (2 Jun; 7 July and 30 Nov. 1990 and 29 Mar. 1991) during 1990/1991. The total of the three carbohydrates varied between days; the levels of arbitol and ribitol being significantly lower in the 7 July sample on both north and south facing rock surfaces. In addition, the levels ribitol, arabitol and mannitol were higher on the south facing rock surface especially in the summer samples. The ratio of arabitol plus mannitol to ribitol and the mannitol/arabitol ratio varied more between days sampled than between north and south facing rock surfaces. The level of ribitol in individual thalli was positively correlated with arabitol on the north facing and with mannitol on the south facing slope. These results suggest that differences in the radial growth of P. conspersa thalli with aspect are more likely to reflect higher rates of photosynthesis on the south facing rock surface rather than large difference in the way carbohydrates were partitioned on the different surfaces. Lower radial growth rates may place P. conspersa at a competitive disadvantage on north facing rock surfaces.
Resumo:
The aim of this study was to investigate the mechanism of action of the preservative sodium chlorite (NaClO2), and the relationship with intracellular glutathione depletion. A detailed comparison of the dose responses of two cultured ocular epithelial cell types and four species of microorganism was carried out, and comparisons were also made with the quaternary ammonium compound benzalkonium chloride (BAK), and the oxidant hydrogen peroxide (H2O2). The viability of mammalian and microbial cells was assessed in the same way, by the measurement of intracellular ATP using a bioluminescence method. Intracellular total glutathione was measured by reaction with 5,5'-dithiobis-2-nitrobenzoic acid in a glutathione reductase-dependent recycling assay. BAK and H2O2 caused complete toxicity to conjunctival and corneal epithelial cells at similar to25 ppm, in contrast to NaClO2 , where >100 ppm was required. The fungi Candida albicans and Alternaria alternata had a higher resistance to NaClO2 than the bacteria Staphyloccus aureus and Pseudomonas aeruginosa , but the bacteria were extremely resistant to H2O2 NaClO2 caused substantial depletion of intracellular glutathione in all cell types, at concentrations ranging from <10 ppm in Pseudomonas , 25-100 ppm in epithelial cells, to >500 ppm in fungal cells. The mechanisms of cytotoxicity of NaClO2 , H2O2 and BAK all appeared to differ. NaClO2 was found to have the best balance of high antibacterial toxicity with low ocular toxicity. The lower toxicity of NaClO2 to the ocular cells, compared with BAK and H2O2 , is in agreement with fewer reported adverse effects of application in the eye.
Resumo:
Treatment of ex-breeder male NMRI mice with lipid mobilising factor isolated from the urine of cachectic cancer patients, caused a significant increase in glucose oxidation to CO2, compared with control mice receiving phosphate buffered saline. Glucose utilisation by various tissues was determined by the 2-deoxyglucose tracer technique and shown to be elevated in brain, heart, brown adipose tissue and gastrocnemius muscle. The tissue glucose metabolic rate was increased almost three-fold in brain, accounting for the ability of lipid mobilising factor to decrease blood glucose levels. Lipid mobilising factor also increased overall lipid oxidation, as determined by the production of 14CO2 from [14C carboxy] triolein, being 67% greater than phosphate buffered saline controls over a 24 h period. There was a significant increase in [14C] lipid accumulation in plasma, liver and white and brown adipose tissue after administration of lipid mobilising factor. These results suggest that changes in carbohydrate metabolism and loss of adipose tissue, together with an increased whole body fatty acid oxidation in cachectic cancer patients, may arise from tumour production of lipid mobilising factor. © 2002 Cancer Research UK.
Resumo:
Vascular dysfunction is one of the major causes of cardiovascular (CV) mortality and increases with age. Epidemiological studies suggest that Mediterranean diets and high nut consumption reduce CV disease risk and mortality while increasing plasma α-tocopherol. Therefore, we have investigated whether almond supplementation can improve oxidative stress markers and CV risk factors over 4 weeks in young and middle-aged men. Healthy middle-aged men (56 ± 5.8 years), healthy young men (22.1 ± 2.9 years) and young men with two or more CV risk factors (27.3 ± 5 years) consumed 50 g almond/day for 4 weeks. A control group maintained habitual diets over the same period. Plasma α-tocopherol/cholesterol ratios were not different between groups at baseline and were significantly elevated by almond intervention with 50 g almond/day for 4 weeks (p < 0.05). Plasma protein oxidation and nitrite levels were not different between groups whereas, total-, HDL- and LDL-cholesterols and triglycerides were significantly higher in healthy middle-aged and young men with CV risk factors but were not affected by intake. In the almond-consuming groups, flow-mediated dilatation (FMD) improved and systolic blood pressure reduced significantly after 50 g almonds/day for 4 weeks, but diastolic blood pressure reduced only in healthy men. In conclusion, a short-term almond-enriched diet can increase plasma α-tocopherol and improve vascular function in asymptomatic healthy men aged between 20 and 70 years without any effect on plasma lipids or markers of oxidative stress. © 2014 Informa UK, Ltd.
Resumo:
Background: A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD. Objective(s): To evaluate the simultaneous behavior of a broad spectrum of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Methods: Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, [3-cryptoxanthin, lycopene, c~- and [3-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobniin G (Ig G) levels of protein carbonyls and dityrosine] in patients and controls. Results: AD and VaD patients showed significantly decreased plasma levels of the water-soluble vitamin C and uric acid, of the lipophilic vitamin Eand vitamin A, and of the carotenoids lutein, zeaxanthin, 13-cryptoxanthin, lycopene and (x-carotene as compared to controls; among biomarkers of oxidative stress, only the content of dityrosine in Ig G was found to be significantly higher (p < 0.01) in AD patients as compared to controls; although a trend towards higher levels of dityrosine was also observed in VaD subjects compared to controls (6.3 4- 1.7 ~M in VaD patients vs. 5.1 4- 1.6 IxM in controls; p = 0.06), it did not reach statistical significance. In a cumulative analysis of all patient samples, a significant inverse association was found between plasma lycopene and MDA levels (r = -0.53, p < 0.0001). Conclusions: Independent of its nature-vascular or degenerativedementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development.
Resumo:
Oxidative DNA damage is postulated to be involved in carcinogenesis, and as a consequence, dietary antioxidants have received much interest. A recent report indicates that vitamin C facilitates the decomposition of hydroperoxides in vitro, generating reactive aldehydes. We present evidence for the in vivo generation of glyoxal, an established product of lipid peroxidation, glucose/ascorbate autoxidation, or free radical attack of deoxyribose, following supplementation of volunteers with 400 mg/d vitamin C. Utilizing a monoclonal antibody to a deoxycytidine-glyoxal adduct (gdC), we measured DNA lesion levels in peripheral blood mononuclear cells. Supplementation resulted in significant (p = .001) increases in gdC levels at weeks 11, 16, and 21, with corresponding increases in plasma malondialdehyde levels and, coupled with previous findings, is strongly suggestive of a pro-oxidative effect. However, continued supplementation revealed a highly significant (p = .0001) reduction in gdC levels. Simultaneous analysis of cyclobutane thymine dimers revealed no increase upon supplementation but, as with gdC, levels decreased. Although no single mechanism is identified, our data demonstrate a pro-oxidant event in the generation of reactive aldehydes following vitamin C supplementation in vivo. These results are also consistent with our hypothesis for a role of vitamin C in an adaptive/repair response and indicate that nucleotide excision repair specifically may be affected. © 2003 Elsevier Science Inc.
Resumo:
C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.
Resumo:
Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.
Resumo:
Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8-10. Both dexamethasone and a β 3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia.
Resumo:
Elevated islet uncoupling protein-2 (UCP-2) impairs β-cell function and UCP-2 may be increased in clinical obesity and diabetes. We investigated the effects of glucose and leptin on UCP-2 expression in isolated human islets. Human islets were incubated for 24 h with glucose (5.5–22 mmol/l)±leptin (0–10 nmol/l). Some islet batches were incubated at high (22 mmol/l), and subsequently lower (5.5 mmol/l), glucose to assess reversibility of effects. Leptin effects on insulin release were also measured. Glucose dose-dependently increased UCP-2 expression in all islet batches, maximally by three-fold. This was not fully reversed by subsequently reduced glucose levels. Leptin decreased UCP-2 expression by up to 75%, and maximally inhibited insulin release by 47%, at 22 mmol/l glucose. This is the first report of UCP-2 expression in human islets and provides novel evidence of its role in the loss of β-cell function in diabetes.