94 resultados para Lens distortion
Resumo:
The extent to which the surface parameters of Progressive Addition Lenses (PALs) affect successful patient tolerance was investigated. Several optico-physical evaluation techniques were employed, including a newly constructed surface reflection device which was shown to be of value for assessing semi-finished PAL blanks. Detailed physical analysis was undertaken using a computer-controlled focimeter and from these data, iso-cylindrical and mean spherical plots were produced for each PAL studied. Base curve power was shown to have little impact upon the distribution of PAL astigmatism. A power increase in reading addition primarily caused a lengthening and narrowing of the lens progression channel. Empirical measurements also indicated a marginal steepening of the progression power gradient with an increase in reading addition power. A sample of the PAL wearing population were studied using patient records and questionnaire analysis (90% were returned). This subjective analysis revealed the reading portion to be the most troublesome lens zone and showed that patients with high astigmatism (> 2.00D) adapt more readily to PALs than those with spherical or low cylindrical (2.00D) corrections. The psychophysical features of PALs were then investigated. Both grafting visual acuity (VA) and contrast sensitivity (CS) were shown to be reduced with an increase in eccentricity from the central umbilical line. Two sample populations (N= 20) of successful and unsuccessful PAL wearers were assessed for differences in their visual performance and their adaptation to optically induced distortion. The possibility of dispensing errors being the cause of poor patient tolerance amongst the unsuccessful wearer group was investigated and discounted. The contrast sensitivity of the successful group was significantly greater than that of the unsuccessful group. No differences in adaptation to or detection of curvature distortion were evinced between these presbyopic groups.
Resumo:
Purpose. To evaluate the influence of soft contact lens midperipheral shape profile and edge design on the apparent epithelial thickness and indentation of the ocular surface with lens movement. Methods. Four soft contact lens designs comprising of two different plano midperipheral shape profiles and two edge designs (chiseled and knife edge) of silicone-hydrogel material were examined in 26 subjects aged 24.7 ± 4.6 years, each worn bilaterally in randomized order. Lens movement was imaged enface on insertion, at 2 and 4 hours with a high-speed, high-resolution camera simultaneous to the cross-section of the edge of the contact lens interaction with the ocular surface captured using optical coherence tomography (OCT) nasally, temporally, and inferiorly. Optical imaging distortions were individually corrected for by imaging the apparent distortion of a glass slide surface by the removed lens. Results. Apparent epithelial thickness varied with edge position (P < 0.001). When distortion was corrected for, epithelial indentation decreased with time after insertion (P = 0.010), changed after a blink (P < 0.001), and varied with position on the lens edge (P < 0.001), with the latter being affected by midperipheral lens shape profile and edge design. Horizontal and vertical lens movement did not change with time postinsertion. Vertical motion was affected by midperipheral lens shape profile (P < 0.001) and edge design (P < 0.001). Lens movement was associated with physiologic epithelium thickness for lens midperipheral shape profile and edge designs. Conclusions. Dynamic OCT coupled with high-resolution video demonstrated that soft contact lens movement and image-corrected ocular surface indentation were influenced by both lens edge design and midperipheral lens shape profiles. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Purpose: The aim of this study was to compare a developmental optical coherence tomography (OCT) based contact lens inspection instrument to a widely used geometric inspection instrument (Optimec JCF), to establish the capability of a market focused OCT system. Methods: Measurements of 27 soft spherical contact lenses were made using the Optimec JCF and a new OCT based instrument, the Optimec is830. Twelve of the lenses analysed were specially commissioned from a traditional hydrogel (Contamac GM Advance 49%) and 12 from a silicone hydrogel (Contamac Definitive 65), each set with a range of back optic zone radius (BOZR) and centre thickness (CT) values. Three commercial lenses were also measured; CooperVision MyDay (Stenfilcon A) in −10D, −3D and +6D powers. Two measurements of BOZR, CT and total diameter were made for each lens in temperature controlled saline on both instruments. Results: The results showed that the is830 and JCF measurements were comparable, but that the is830 had a better repeatability coefficient for BOZR (0.065 mm compared to 0.151 mm) and CT (0.008 mm compared to 0.027 mm). Both instruments had similar results for total diameter (0.041 mm compared to 0.044 mm). Conclusions: The OCT based instrument assessed in this study is able to match and improve on the JCF instrument for the measurement of total diameter, back optic zone radius and centre thickness for soft contact lenses in temperature controlled saline.
Resumo:
Purpose: To determine the critical fitting characteristics of modern soft contact lens fits and from this to devise a simplified recording scheme. Methods: Ten subjects (aged 28.1 ± 7.4 years) wore eight different modern soft contact lenses. Video was captured and analysed of blink (central and up-gaze), excursion lag (up, down, right and left gaze) and push-up movement, centration and coverage. Results: Lens centration was on average close to the corneal centre. Movement on blink was significantly smaller in up-gaze than in primary-gaze (p<0.001). Lag was greatest in down-gaze and least in up-gaze (p<0.001). Push-up test recovery speed was 1.32±0.73mm/s. Overall lens movement was determined best by assessing horizontal lag, movement on blink in up-gaze and push-up recovery speed. Steeper lens base-curves did not have a significant effect on lens fit characteristics. Contact lens material did influence lens fit characteristics, particularly silicone-hydrogels which generally had lower centration and a faster push-up speed of recovery than HEMA lenses (p<0.05). Conclusion: Lag on vertical gaze, and movement on blink in primary gaze generally provide little extra information on overall lens movement compared to horizontal lag, movement on blink in up gaze and push-up recovery speed. They can therefore be excluded from a simplified recording scheme. A simplified and comprehensive soft contact lens fit recording system could consist of a cross-hairs indicating the centre of the cornea; a circle to indicate the lens centration; a mark on the relevant position of the circle to indicate any limbal incursion; a grade (‘B’) below for movement with blink in up-gaze, a grade (‘L’) to the side for horizontal lag and a grade above (‘P’) for the assessed push-up recovery speed.
Resumo:
To evaluate the influence of peripheral ocular topography, as evaluated by optical coherence tomography (OCT), compared with traditional measures of corneal profile using keratometry and videokeratoscopy, on soft contact lens fit.
Resumo:
Purpose. To report differences in the incidence of conjunctival epithelial flaps (CEFs) found in a group of neophyte contact wearers using two different silicone hydrogel contact lenses on a daily- and continuous-wear basis during an 18-month period. Methods. Sixty-one subjects were initially examined, and 53 were eligible to participate in the study. Eligible subjects were randomly assigned to wear one of two silicone hydrogel materials, lotrafilcon A or balafilcon A, on a daily- or continuous-wear basis. After an initial screening, subjects were monitored weekly for the first month and then after 3, 6, 12, and IS months. The incidence of CEFs in each of the four contact lens groups was recorded. Results. Five of the 53 subjects enrolled in the study showed bilateral CEFs. A higher incidence of CEFs was found in subjects wearing lotrafilcon A lenses (n = 4) compared to balafilcon A lenses (it = 1) (chi(2) = 4.37, P=0.04). Differences in the incidence of CEFs between subjects wearing lenses on a daily-wear basis (n = 1) versus a continuous-wear basis (it = 4) showed a weak statistical significance (chi(2) = 3.03, P=0.08). Conclusions. Lotrafilcon A lenses were associated with a higher incidence of CEFs than balafilcon A lenses were, and this difference may be attributed to differences in the edge design, material, or modulus of rigidity between the two lens types. Subjects wearing lenses on a daily-wear basis showed fewer adverse events than did subjects wearing lenses on a continuous-wear basis. The longer wearing times of subjects wearing lenses on a continuous-wear basis are likely to exacerbate the incidence of CEFs.
Resumo:
The wearing of tinted spectacle lenses is considered by some health care workers to be a marker of psychopathology or a hypochondriacal personality type. The purpose of this study was to determine whether there is a relationship between the wearing of tinted spectacle lenses and personality type in physically healthy subjects. The Sixteen Personality Factor Questionnaire 5th Edition, a multidimensional standardized self-report inventory, was used to determine the personality type of 98 participants. Twenty currently wore tinted spectacle lenses for reasons other than ocular disease, sun protection, outdoor or indoor glare reduction, pattern sensitive epilepsy, migraines, reading difficulties or fashion. The remainder did not wear tinted spectacle lenses for any purpose other than sun protection. Tinted lens wear and no tinted lens wear groups were age and gender matched. There was no statistically significant difference in five global personality factors between the no-tint and tint groups: extraversion (p = 0.31), anxiety (p = 0.75), tough-mindedness (p = 0.96), independence (p = 0.63), and self-control (p = 0.87). This suggests that the use of tinted lenses by physically healthy people is unlikely to be an indicator of personality type. © 2007 The Author.
Resumo:
The development of strategy remains a debate for academics and a concern for practitioners. Published research has focused on producing models for strategy development and on studying how strategy is developed in organisations. The Operational Research literature has highlighted the importance of considering complexity within strategic decision making; but little has been done to link strategy development with complexity theories, despite organisations and organisational environments becoming increasingly more complex. We review the dominant streams of strategy development and complexity theories. Our theoretical investigation results in the first conceptual framework which links an established Strategic Operational Research model, the Strategy Development Process model, with complexity via Complex Adaptive Systems theory. We present preliminary findings from the use of this conceptual framework applied to a longitudinal, in-depth case study, to demonstrate the advantages of using this integrated conceptual model. Our research shows that the conceptual model proposed provides rich data and allows for a more holistic examination of the strategy development process. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
PURPOSE: To assess the repeatability of an objective image analysis technique to determine intraocular lens (IOL) rotation and centration. SETTING: Six ophthalmology clinics across Europe. METHODS: One-hundred seven patients implanted with Akreos AO aspheric IOLs with orientation marks were imaged. Image quality was rated by a masked observer. The axis of rotation was determined from a line bisecting the IOL orientation marks. This was normalized for rotation of the eye between visits using the axis bisecting 2 consistent conjunctival vessels or iris features. The center of ovals overlaid to circumscribe the IOL optic edge and the pupil or limbus were compared to determine IOL centration. Intrasession repeatability was assessed in 40 eyes and the variability of repeated analysis examined. RESULTS: Intrasession rotational stability of the IOL was ±0.79 degrees (SD) and centration was ±0.10 mm horizontally and ±0.10 mm vertically. Repeated analysis variability of the same image was ±0.70 degrees for rotation and ±0.20 mm horizontally and ±0.31 mm vertically for centration. Eye rotation (absolute) between visits was 2.23 ± 1.84 degrees (10%>5 degrees rotation) using one set of consistent conjunctival vessels or iris features and 2.03 ± 1.66 degrees (7%>5 degrees rotation) using the average of 2 sets (P =.13). Poorer image quality resulted in larger apparent absolute IOL rotation (r =-0.45,P<.001). CONCLUSIONS: Objective analysis of digital retroillumination images allows sensitive assessment of IOL rotation and centration stability. Eye rotation between images can lead to significant errors if not taken into account. Image quality is important to analysis accuracy.
Resumo:
Aim: The aim of this study was to assess the impact of hand washing regimes on lipid transference to contact lenses. The presence of lipids on contact lenses can affect visual acuity and enhance spoilation. Additionally, they may even mediate and foster microbial transfer and serve as a marker of potential dermal contamination. Methods and materials: A social hand wash and the Royal College of Nursing (RCN) hand wash were investigated. A 'no-wash regime' was used as control. The transfer of lipids from the hand was assessed by Thin Layer Chromatography (TLC). Lipid transference to the contact lenses was studied through fluorescence spectroscopy (FS). Results: Iodine staining, for presence of lipids, on TLC plates indicated the 'no-wash regime' score averaged at 3.4 ± 0.8, the social wash averaged at 2.2 ± 0.9 and the RCN averaged at 1.2 ± 0.3 on a scale of 1-4. The FS of lipids on contact lenses for 'no washing' presented an average of 28.47 ± 10.54 fluorescence units (FU), the social wash presented an average of 13.52 ± 11.12. FU and the RCN wash presented a much lower average 6.47 ± 4.26. FU. Conclusions: This work demonstrates how the method used for washing the hands can affect the concentration of lipids, and the transfer of these lipids onto contact lenses. A regime of hand washing for contact lens users should be standardised to help reduce potentially transferable species present on the hands. © 2011 British Contact Lens Association.
Resumo:
Purpose: To determine the most appropriate analysis technique for the differentiation of multifocal intraocular lens (MIOL) designs using defocus curve assessment of visual capability.Methods:Four groups of fifteen subjects were implanted bilaterally with either monofocal intraocular lenses, refractive MIOLs, diffractive MIOLs, or a combination of refractive and diffractive MIOLs. Defocus curves between -5.0D and +1.5D were evaluated using an absolute and relative depth-of-focus method, the direct comparison method and a new 'Area-of-focus' metric. The results were correlated with a subjective perception of near and intermediate vision. Results:Neither depth-of-focus method of analysis were sensitive enough to differentiate between MIOL groups (p>0.05). The direct comparison method indicated that the refractive MIOL group performed better at +1.00, -1.00 and -1.50 D and worse at -3.00, -3.50, -4.00 and -5.00D compared to the diffractive MIOL group (p
Resumo:
We describe a non-invasive phakometric method for determining corneal axis rotation relative to the visual axis (β) together with crystalline lens axis tilt (α) and decentration (d) relative to the corneal axis. This does not require corneal contact A-scan ultrasonography for the measurement of intraocular surface separations. Theoretical inherent errors of the method, evaluated by ray tracing through schematic eyes incorporating the full range of human ocular component variations, were found to be larger than the measurement errors (β < 0.67°, α < 0.72° and d < 0.08 mm) observed in nine human eyes with known ocular component dimensions. Intersubject variations (mean ± S.D.: β = 6.2 ± 3.4° temporal, α = 0.2 ± 1.8° temporal and d = 0.1 ± 0.1 mm temporal) and repeatability (1.96 × S.D. of difference between repeat readings: β ± 2.0°, α ± 1.8° and d ± 0.2 mm) were studied by measuring the left eyes of 45 subjects (aged 18-42 years, 29 females and 16 males, 15 Caucasians, 29 Indian Asians, one African, refractive error range -7.25 to +1.25 D mean spherical equivalent) on two occasions. © 2005 The College of Optometrists.
Resumo:
We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d1) and anterior chamber depth (d2) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d 3) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates (mean±standard deviation(SD)]d1 by +62±4 μm and d2 by +4±88μm. The improved scheme reduces d1 (-0.4±4 μm) and d2 (0±49 μm) errors while also reducing d3 errors from +218±90 (uncorrected) to +14±123 μm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3±10 and 0±23 μm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2±22 and +11±71 μm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses. © 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
PURPOSE:To investigate the mechanism of action of the Tetraflex (Lenstec Kellen KH-3500) accommodative intraocular lens (IOL). METHODS:Thirteen eyes of eight patients implanted with the Tetraflex accommodating IOL for at least 2 years underwent assessment of their objective amplitude-of-accommodation by autorefraction, anterior chamber depth and pupil size with optical coherence tomography, and IOL flexure with aberrometry, each viewing a target at 0.0 to 4.00 diopters of accommodative demand. RESULTS:Pupil size decreased by 0.62+/-0.41 mm on increasing accommodative demand, but the Tetraflex IOL was relatively fixed in position within the eye. The ocular aberrations of the eye changed with increased accommodative demand, but not in a consistent manner among individuals. Those aberrations that appeared to be most affected were defocus, vertical primary and secondary astigmatism, vertical coma, horizontal and vertical primary and secondary trefoil, and spherical aberration. CONCLUSIONS:Some of the reported near vision benefits of the Tetraflex accommodating IOL appear to be due to changes in the optical aberrations because of the flexure of the IOL on accommodative effort rather than forward movement within the capsular bag.