42 resultados para LONG-DISTANCE MIGRATION
Resumo:
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
This thesis presents results of transmission experiments using optical solitons in a dispersion managed optical fibre recirculating loop. The basic concepts of pulse propagation in optical fibre are introduced before optical solitons and their use in optically amplified fibre systems are discussed. The role of dispersion management in such systems is then considered. The design, operation and limitations of the recirculating loop and soliton sources which were used and the experimental techniques are described before the experimental work is presented. The experimental work covers a number of areas all of which used dispersion management of the transmission line. A novel ultra-long distance propagation scheme which achieved low timing jitter by suppression of the amplifier noise and by working close to the zero dispersion wavelength has been discovered. The use of fibre Bragg gratings as wavelength filters to suppress noise and reduce timing jitter has been investigated. The performance of the fibre grating cornpared favourably with that of a bulk device and was in good agreement with theoretical predictions. The upgrade of existing standard fibre systems to higher bit rates is currently an important issue. The possibility of using solitons with dispersion compensation to allow an increase in data rate of existing standard fibre systems to 10Gbit/s over 5000km has been demonstrated. The applicability of this technique to longer distances, higher bit rates or longer amplifier spans is also investigated by optimisation of the dispersion management scheme. The use of fibre Bragg gratings as the dispersion compensating elements in such standard fibre transmission experiments has been examined and the main problem that these devices currently have, high polarisation mode dispersion, is discussed. The likely future direction of optical communications and what part solitons and dispersion management will play in this development is discussed in the thesis conclusions
Resumo:
We present the first experimental demonstration (to our knowledge) of long-distance unperturbed fundamental optical soliton transmission in conventional single-mode optical fiber. The virtual transparency in the fiber required for soliton transmission, over 15 complete periods, was achieved by using an ultralong Raman fiber laser amplification scheme. Optical soliton pulse duration, pulse bandwidth, and peak intensity are shown to remain constant along the transmission length. Frequency-resolved optical gating spectrograms and numerical simulations confirm the observed optical soliton dynamics.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.
Resumo:
Accounts of Tamil long-distance nationalism have focused on Sri Lankan Tamil migrants. But the UK is also home to Tamils of non-Sri Lankan state origins. While these migrants may be nominally incorporated into a 'Tamil diaspora', they are seldom present in scholarly accounts. Framed by Werbner's (2002) conception of diasporas as 'aesthetic' and 'moral' communities, this article explores whether engagement with a Tamil diaspora and long-distance nationalism is expressed by Tamil migrants of diverse state origins. While migrants identify with an aesthetic community, 'membership' of the moral community is contested between those who hold direct experience of suffering as central to belonging, and those who imagine the boundaries of belonging more fluidly - based upon primordial understandings of essential ethnicity and a narrative of Tamil 'victimhood' that incorporates experiences of being Tamil in Sri Lanka, India and in other sites, despite obvious differences in these experiences. © 2013 Taylor & Francis.
Resumo:
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present experimental results for monitoring long distance WDM communication links using a line monitoring system suitable for legacy optically amplified long-haul undersea systems. This monitoring system is based on setting up a simple, passive, low cost high-loss optical loopback circuit at each repeater that provides a connection between the existing anti-directional undersea fibres, and can be used to define fault location. Fault location is achieved by transmitting a short pulse supervisory signal along with the WDM data signals where a portion of the overall signal is attenuated and returned to the transmit terminal by the loopback circuit. A special receiver is used at the terminal to extract the weakly returned supervisory signal where each supervisory signal is received at different times corresponding to different optical repeaters. Therefore, the degradation in any repeater appears on its corresponding supervisory signal level. We use a recirculating loop to simulate a 4600 km fibre link, on which a high-loss loopback supervisory system is implemented. Successful monitoring is accomplished through the production of an appropriate supervisory signal at the terminal that is detected and identified in a satisfactory time period after passing through up to 45 dB attenuation in the loopback circuit. © 2012 Elsevier B.V. All rights reserved.
Resumo:
In coliphage MS2 RNA a long-distance interaction (LDI) between an internal segment of the upstream coat gene and the start region of the replicase gene prevents initiation of replicase synthesis in the absence of coat gene translation. Elongating ribosomes break up the repressor LDI and thus activate the hidden initiation site. Expression studies on partial MS2 cDNA clones identified base pairing between 1427-1433 and 1738-1744, the so-called Min Jou (MJ) interaction, as the molecular basis for the long-range coupling mechanism. Here, we examine the biological significance of this interaction for the control of replicase gene translation. The LDI was disrupted by mutations in the 3'-side and the evolutionary adaptation was monitored upon phage passaging. Two categories of pseudorevertants emerged. The first type had restored the MJ interaction but not necessarily the native sequence. The pseudorevertants of the second type acquired a compensatory substitution some 80 nt downstream of the MJ interaction that stabilizes an adjacent LDI. In one examined case we confirmed that the second site mutations had restored coat-replicase translational coupling. Our results show the importance of translational control for fitness of the phage. They also reveal that the structure that buries the replicase start extends to structure elements bordering the MJ interaction.
Resumo:
The optical regeneration is an attractive method to improve the performance of long-distance data transmission, though its application in high-speed fiber systems requires careful design consideration/optimization. In this letter we investigate 40 Gbit/s dispersion-managed fiber transmission with optical 2R regeneration based on quantum well saturable absorber and highly non-linear fiber. We demonstrate through numerical modeling a feasibility of a single channel transmission over 10,000 km using optimized system design. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
Resumo:
This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.