19 resultados para Iron chelates -- Therapeutic use
Resumo:
Repair of tissue after injury depends on a series of concerted but overlapping events including, inflammation, re-epithelialization, neovascularization and synthesis and stabilization of a fibrous extracellular matrix (ECM) that is remodeled to emulate normal tissue over time. Particular members of the transglutaminase (TG) family are upregulated during wound healing and act as a novel class of wound-healing mediators during the repair process. This group of enzymes which crosslink proteins via epsilon(gamma-glutamyl) lysine bridges are involved in wound healing through their ability to stabilize proteins and also by regulating the behavior of a wide variety of cell types that are recruited to the damaged area in order to carry out tissue repair. In this article we discuss the function of the most widely expressed member of the TG family "tissue transglutaminase" (TG2) in wound repair. Using both early and recent evidence from the literature we demonstrate how the multifunctional TG2 affects the stability of the ECM, cell-ECM interactions and as a consequence cell behavior within the different phases of wound healing, and highlight how TG2 itself might be exploited for therapeutic use.
Resumo:
Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.
Resumo:
Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and nongovernmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathway-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.
Resumo:
This investigation has been concerned with the behaviour of solid internal lubricant during mixing, compaction, ejection, dewaxing and sintering of iron powder compacts. Zinc stearate (0.01%-4.0%) was added to irregular iron powder by admixing or precipitation from solution. Pressure/density relationships, determined by continuous compaction, and loose packed densities were used to show that small additions of zinc stearate reduced interparticle friction during loose packing and at low compaction pressures. Large additions decreased particle/die-wall friction during compaction and ejection but also caused compaction inhibition. Transverse rupture strengths were determined on compacts containing various stearate based lubricants and it was found that green strength was reduced by the interposition of a thin lubricant layer within inter~particle contacts. Only materials much finer than the iron powder respectively) were able to form such layers. Investigations were undertaken to determine the effect of the decomposition of these lubricants on the development of mechanical properties in dewaxed or sintered compacts. Physical and chemical influences on tensile strength were observed. Decomposition of lubricants was associated with reductions of strength caused by the physical effects of pressure increases and removal of lubricant from interparticle contacts. There were also chemical effects associated with the influence of gaseous decomposition products and solid residues on sintering mechanisms. Thermogravimetry was used to study the decomposition behaviour of various lubricants as free compounds and within compacts. The influence of process variables such as atmosphere type, flow-rate and compact density were investigated. In a reducing atmosphere the decomposition of these lubricants was characterised by two stages. The first involved the rapid decomposition of the hydrocarbon radical. The second, higher temperature, reactions depended on lubricant type and involved solid residues. The removal of lubricant could also markedly affect dimensional change.
Resumo:
The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
Three iromps (iron-regulated outer membrane proteins) of Aeromonas salmonicida were identified by the use of specific antibodies together with Southern hybridization analysis and limited nucleotide sequencing of their genes. The results of these experiments together with a search of the international database for homologous sequences led to their identification as follows: -86 kDa iromp (FstA) as a Vibrio anguillarum Fat A homologue -82 kDa iromp (FepA) as an Escherichia coli FepA homologue -74 kDa iromp (IrpA) as an Escherichia coli Cir homologue.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.
Resumo:
The changes of the concentration of iron in the growth substrates and the sporophores of Agaricus bisporus (Lange) Pilat that occurred during culture under standard commercial conditions, were observed using atomic absorption spectrophotometry and iron-59 radiotracing techniques. The routes of translocation and sites of iron accumulation within the sporophore were shovn to alter during development and by the use of novel, pelletised substrates the concentration of iron in the mycelium of the substrates and in developing sporophores was observed during culture. Findings indicated that the compost was the major source of iron and that the concentration of iron in the compost mycelium varied cyclically in relation to the periodic appearance of sporophores. In the casing layer the mycelium is organised into strands which are responsible for the movement of iron from the compost into developing sporophores. A photographic technique for estimating sporophore growth rates showed that the accumulation of iron was not concomitant with sporophore growth and this was attributable to a declining quantity of available iron in the compost mycelium during sporophore growth. Variations in the quantity of iron in sporophores resulted primarily from differences in the quantity of water soluble iron in the compost but, the productivity of the crop, the type of casing layer and differences in watering also influenced sporophore composition. Changes in the concentration of extractable iron in the compost and casing layer throughout culture were related to mycelial activity and to a lesser extent were influenced by watering and the bacterial populations of the casing layer. Thus, the findings of this study give some indication of the relative importance that different cultural conditions exert over sporophore composition together with demonstrations of the movement of a single material within the sporophores and substrates during the cultivation of Agaricus bisporus.
Resumo:
Psoriasis is characterised by epidermal proliferation and inflammation resulting in the appearance of elevated erythematous plaques. The ratio of c~AMP/c~GMP is decreased in psoriatic skin and when the epidermal cell surface receptors are stimulated by β-adrenergic agonists, intracellular ATP is transformed into c-AMP, thus restoring the c~AMP/c~GMP levels. This thesis describes a series of β-adrenoceptor agonists for topical delivery based upon the soft-drug approach. Soft drugs are defined as biologically active, therapeutically useful chemical compounds (drugs) characterised by a predictable and controllable In vivo destruction (metabolism) to non-toxic moieties. after they achieve their therapeutic role, The N-substituent can accommodate a broad range of structures and here the alkoxycarbonylethyl group has been used to provide metabolic susceptability. The increased polarity of the dihydroxy acid, expected after metabolic conversion of the soft~drug, ethyl N-[2'-(3',4'-dihydroxyphenyl)-2'-hydroxyethyl]-3- aminopropionate, should eliminate agonist activity. Further. to prevent oxidation and enhance topical delivery, the catechol hydroxyl groups have been esterified to produce a pro-soft-drug which generates the soft-drug in enzymic systems. The chemical hydrolysis of the pro-soft-drug proceeded via the formation of the dlpivaloyloxy acid and it failed to generate the active dihydroxy ester soft-drug. In contrast, in the presence of porcine liver carboxyesterase, the hydrolysis of the pro-soft drug proceeded via the formation of the required active soft-drug. This compound, thus, has the appropnate kinetic features to enable it to be evaluated further as a drug for the treatment of psoriasis. The pH rate-profile for the hydrolysis of soft-drug indicated a maximum stability at pH ∼ 4.0. The individual rate constants for the degradation and the pKa were analysed by nonlinear regression. The pKa of 7.40 is in excellent agreement with that determined by direct titration (7.43) and indicates that satisfactory convergence was achieved. The soft-drug was poorly transported across a silicone membrane; it was also air-sensitive due to oxidation of the catechol group. The transport of the pro-soft-drug was more efficient and, over the donor pH range 3-8, increased with pH. At lower values, the largely protonated species was not transported. However, above pH 7. chemical degradation was rapid so that a donor pH of 5-6 was optimum. The β-adrenergic agonist activity of these compounds was tested in vitro by measuring chronotropic and inotropic responses in the guinea pig atria and relaxation of guinea pig trachea precontracted with acetylcholine (10-3 M). The soft~drug was a full agonist on the tracheal preparation but was less potent than isoprenaline. Responses of the soft~drug were competitively antagonised by propranolol (10-6 M). The soft~drug produced an increase in force and rate of the isolated atrial preparatIon. The propyl analogue was equally potent with ED50 of 6.52 x 10-7 M. In contrast, at equivalent doses, the dihydroxy acid showed no activity; only a marginal effect was observed on the tracheal preparation. For the pro~soft-drug, responses were of slow onset, in both preparations, with a slowly developing relaxatlon of the tracheal preparatlon at high concentrations (10-5 M). This is consistent with in vitro results where the dipivaloyl groups are hydrolysed more readily than the ethyl ester to gIve the active soft-drug. These results confirm the validity tif the pro-soft-drug approach to the deUvery of β-adrenoceptor agonists.
Resumo:
Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.
Resumo:
The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells. © 2013 Hipkiss et al.; licensee Chemistry Central Ltd.
Resumo:
Cannabidiol (CBD), a once-considered inert cannabis constituent, is one of two primary constituents of cannabis, alongside delta-9-tetrahydrocannabinol (?9-THC/THC). In the last 30 years, CBD has become implicated with a range of pharmaceutical mechanisms of great therapeutic interest and utility. This review details the literature speculating CBD’s attenuation of psychotic symptoms, particularly in light of a marked elevation in mean THC concentrations, and a concomitant decline in CBD concentrations in the prevalent U.K street market cannabis derivatives since c. 2000. CBD is purported to exhibit pharmacology akin to established atypical antipsychotics, whilst THC has been implicated with the precipitation of psychosis, and the induction of associated symptoms. The aim of the review was to clarify the conjecture surrounding CBD’s antipsychotic efficacy, before going on to detail prominent theories about its associated pharmacodynamics. Were CBD’s antipsychotic efficacy established, then there is potential for major latent anthropological repercussions to manifest, such as significant elevations in psychosis manifestations in the U.K. The review found a largely affirmative body of evidence asserting CBD’s antipsychotic efficacy. CBD exhibited capacity to attenuate natural and artificially induced psychoses in both animal and human cohorts, the latter of which included individuals considered resistant to conventional treatment. CBD also shows promising potential for use as an antipsychotic drug for Parkinson’s disease (PD) patients with psychosis, owing to its low rate of extra-pyramidal side-effect induction. A range of potential pharmacological mechanisms behind CBD’s neuroleptic pharmacology are outlined, with particular emphasis on its prevention of the hydrolysis and reuptake of the endogenous cannabinoid, anandamide. However, given the nebular aetiological basis for psychoses, explicit conclusions on how CBD attenuates psychotic symptoms remains to be determined.