22 resultados para High temperature fatigue life assessment
Resumo:
Biofuels and chemicals from biomass mean the gasification of biogenic feedstocks and the synthesis via methanol, dimethylester (DME) or Fischer-Tropsch products. To prevent the sensitive synthesis catalysts from poisoning the syngas must be free of tar and particulates. The trace concentrations of S-, C1-, N-species, alkali and heavy metals must be of the order of a few ppb. Moreover maximum conversion efficiency will be achieved performing the gas cleaning above the synthesis conditions. The concept of an innovative dry HTHP syngas cleaning is presented. Based on the HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants a total concept will be derived, which leads to a syngas quality required for synthesis catalysts in only 2 combined stages. The experimental setup for the HT gas cleaning behind the 60 kWtherm entrained flow gasifier REGA of the institute is described. Results from HT filter experiments in pilot scale are presented. The performance of 2 natural minerals for HC1 and H2S sorption is discussed with respect to the parameters temperature, surface and residence time. Results from lab scale investigations on low temperature tar catalysts' performance (commercial and proprietary development) are discussed finally.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
It is well accepted that the climate impact of large explosive volcanic eruptions results from reduction of solar radiation following atmospheric conversion of magmatic SO emissions into HSO aerosols. Thus, understanding the fate of SO in the eruption plume is crucial for better assessing volcanic forcing of climate. Here we focus on the potential of tephra to interact with and remove SO gas from the eruptive plume. Scavenging of SO by tephra is generally assumed to be driven by in-plume, low-temperature reactions between HSO condensates and tephra particles. However, the importance of SO gas-tephra interaction above the dew point temperature of HSO (190-200°C) has never been constrained. Here we report the results of an experimental study where silicate glasses with representative volcanic compositions were exposed to SO in the temperature range 25-800°C. We show that above 600°C, the uptake of SO on glass exhibits optimal efficiency and emplaces surficial CaSO deposits. This reaction is sustained via Ca diffusion from the bulk to the surface of the glass particles. At 800°C, the diffusion coefficient for Ca in the glasses was in the range 10-10cms. We suggest that high temperature SO scavenging by glass-rich tephra proceeds by the same Ca diffusion-driven mechanism. Using a simple mathematical model, we estimated SO scavenging efficiencies at 800°C varying from
Resumo:
An investigation, employing edge-on transmission electron microscopy, of the microstructure of aluminide diffusion coatings on a single crystal y' strengthened nickel base super alloy is reported. An examination has been made of the effect of postcoating exposure at 1100°C on the stability of the coating matrix, a B2 type phase, nominally NiAl. Precipitation in the coating is considered with respect to both decomposition of the B2 matrix to other Ni-Al (plus titanium) phases and the formation of chromium bearing precipitates. A comparison is drawn with behaviour at lower temperatures (850-950°C). © 1995 The Institute of Materials.
Resumo:
Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.
Resumo:
We report an investigation of thermal properties of long-period fiber gratings (LPFGs) of various periods fabricated in the conventional B-Ge codoped fiber. It has been found that the temperature sensitivity of the LPFGs produced in the B-Ge fiber can be significantly enhanced as compared with the standard telecom fiber. A total of 27.5-nm spectral shift was achieved from only 10 °C change in temperature for an LPFG with 240-μm period, demonstrating a first ever reported high sensitivity of 2.75 nm/°C. Such an LPFG may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high-temperature resolution. The nonlinear thermal response of the supersensitive LPG was also reported and first explained.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The 'edge on' transmission electron microscopy technique is employed to study cross-sections of two stage (aluminization plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminum from the coating and/or aging of the coating. Aluminum removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.
Resumo:
The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °C, 800 °C, and 1000 °C. Tests were performed using cylindrical specimens under strain control at ∼0.25 Hz; total strain ranges from 0.5 to 1.6 pet were investigated. At 600 °C, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 °C and 1000 °C, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °C, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pet and above 800 °C. The presence of the coating was beneficial at 800 °C for total strain rangesless than 1.2 pet. No effect of the coating was observed at 1000 °C. Crack growth in the substrate at 800 °C was similar to 600 °C; at 1000 °C, greater plasticity and oxidationrwere observed and cracks grew exclusively in a stage II manner.