16 resultados para Frontal sinus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of diffuse, primitive and classic beta/A4 protein deposits was estimated in sulci and gyri in the frontal cortex and parahippocampal gyrus (PHG) in 8 cases of Alzheimer's disease. Total beta/A4 deposit density was similar in the frontal cortex and PHG but the ratio of primitive and classic deposits to the total was greater in the PHG compared with the frontal cortex. Total beta/A4 deposit density was greater in the depths of the sulci, but the proportions of the various beta/A4 subtypes were similar in sulci and gyri. Hence, increased density of primitive and classic deposits in the PHG could reflect enhanced conversion of diffuse to mature deposits whereas increased density of mature beta/A4 subtypes in sulci versus gyri may reflect increased beta/A4 deposition in the sulci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the laminar distribution of the pathological changes in the cerebral cortex in progressive supranuclear palsy (PSP). METHOD: The distribution of the abnormally enlarged neurons (EN), surviving neurons, neurofibrillary tangles (NFT), glial inclusions (GI), tufted astrocytes (TA), and neuritic plaques (NP) were studied across the cortex in tau immunolabeled sections of frontal and temporal cortex in 8 cases of PSP. RESULTS: The distribution of the NFT was highly variable with no consistent pattern of laminar distribution. The GI were distributed either in the lower laminae or uniformly across the cortex. Surviving neurons exhibited either a density peak in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. The EN and glial cell nuclei were distributed primarily in the lower cortical laminae. There were positive correlations between the densities of the EN and glial cell nuclei and negative correlations between the surviving neurons and glial cells. No correlations were present between the densities of the NFT and GI. CONCLUSION: Cortical pathology in PSP predominantly affects the lower laminae but may spread to affect the upper laminae in some cases. The NFT and GI may have different laminar distributions and gliosis occurs concurrently with neuronal enlargement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the distribution of the pathological changes in the neocortex in multiple-system atrophy (MSA). METHOD: The vertical distribution of the abnormal neurons (neurons with enlarged or atrophic perikarya), surviving neurons, glial cytoplasmic inclusions (GCI) and neuronal cytoplasmic inclusions (NI) were studied in alpha-synuclein-stained material of frontal and temporal cortex in ten cases of MSA. RESULTS: Abnormal neurons exhibited two common patterns of distribution, viz., density was either maximal in the upper cortex or a bimodal distribution was present with a density peak in the upper and lower cortex. The NI were either located in the lower cortex or were more uniformly distributed down the cortical profile. The distribution of the GCI varied considerably between gyri and cases. The density of the glial cell nuclei was maximal in the lower cortex in the majority of gyri. In a number of gyri, there was a positive correlation between the vertical densities of the abnormal neurons, the total number of surviving neurons, and the glial cell nuclei. The vertical densities of the GCI were not correlated with those of the surviving neurons or glial cells but the GCI and NI were positively correlated in a small number of gyri. CONCLUSION: The data suggest that there is significant degeneration of the frontal and temporal lobes in MSA, the lower laminae being affected more significantly than the upper laminae. Cortical degeneration in MSA is likely to be secondary to pathological changes occurring within subcortical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the laminar distribution of the pathological changes in the frontal and temporal lobe in neuronal intermediate filament inclusion disease (NIFID). Method: The distribution of the alpha-intenexin-positive neuronal cytoplasmic inclusions (NCI), surviving neurons, swollen achromatic neurons (SN) and glial cell nuclei was studied across the cortex in gyri of the frontal and temporal lobe in 10 cases of NIFID. Results: The distribution of the NCI was highly variable within different gyri, a peak in the upper cortex, a bimodal distribution with peaks of density in the upper and lower laminae, or no significant variation in density across the cortex. The surviving neurons were either bimodally distributed or exhibited no significant change in density across the cortex. The SN and glial cell nuclei were most abundant in the lower cortical laminae. In half of the gyri, variations in density of the NCI across the cortex were positively correlated with the SN. In some gyri, the surviving neurons were positively correlated with the SN and negatively correlated with the glial cell nuclei. In addition, the SN and glial cell nuclei were positively correlated in over half the gyri studied. Conclusion: The data suggest that frontal and temporal lobe degeneration in NIFID characterized by NCI, SN, neuronal loss and gliosis extends across the cortical laminae with considerable variation between cases and gyri. alpha-internexin-positive neurons in the upper laminae appear to be particularly vulnerable. The gliosis appears to be largely correlated with the appearance of SN and with neuronal loss and not related to the NCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lesions in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have distinct laminar distributions in the cortex. The objective of the present study was to test the hypothesis that the lesions characteristic of Pick's disease (PD) and AD have distinctly different laminar distributions in cases of PD. Hence, the laminar distribution of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) was studied in the frontal and temporal cortex in nine patients with PD. In 57% of analyses of individual cortical areas, the density of PB was maximal in the upper cortex while in 25% of analyses, the distribution of PB was bimodal with density peaks in the upper and lower cortex. The density of PC was maximal in the lower cortex in 77% of analyses while a bimodal distribution was present in 5% of analyses. The density of NFT was maximal in the upper cortex in 50% of analyses, in the lower cortex in 15% of analyses, with a bimodal distribution in 4% of analyses. The density of SP did not vary significantly with cortical depth in 86% of analyses. The vertical densities of PB and PC were negatively correlated in 12/21 (57%) of brain areas. The maximum density of PB in the upper cortex was positively correlated with the maximum density of PC in the lower cortex. In 17/25 (68%) of brain areas, there was no significant correlation between the vertical densities of PB and NFT. The data suggest that the pathogenesis of PB may be related to that of the PC. In addition, although in many areas PB and NFT occur predominantly in the upper cortex, the two lesions appeared to affect different neuronal populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The densities of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) in the frontal and temporal lobe were determined in ten patients diagnosed with Pick's disease (PD). The density of PB was significantly higher in the dentate gyrus granule cells compared with the cortex and the CA sectors of the hippocampus. Within the hippocampus, the highest densities of PB were observed in sector CA1. PC were absent in the dentate gyrus and no significant differences in PC density were observed in the remaining brain regions. With the exception of two patients, the densities of SP and NFT were low with no significant differences in mean densities between cortical regions. In the hippocampus, the density of NFT was greatest in sector CA1. PB and PC densities were positively correlated in the frontal cortex but no correlations were observed between the PD and AD lesions. A principal components analysis (PCA) of the neuropathological variables suggested that variations in the densities of SP in the frontal cortex, temporal cortex and hippocampus were the most important sources of heterogeneity within the patient group. Variations in the densities of PB and NFT in the temporal cortex and hippocampus were of secondary importance. In addition, the PCA suggested that two of the ten patients were atypical. One patient had a higher than average density of SP and one familial patient had a higher density of NFT but few SP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clustering pattern of diffuse, primitive and classic β-amyloid (Aβ) deposits was studied in the upper laminae of the frontal cortex of 9 patients with sporadic Alzheimer's disease (AD). Aβ stained tissue was counterstained with collagen type IV antiserum to determine whether the clusters of Aβ deposits were related to blood vessels. In all patients, Aβ deposits and blood vessels were clustered, with in many patients, a regular periodicity of clusters along the cortex parallel to the pia. The classic Aβ deposit clusters coincided with those of the larger blood vessels in all patients and with clusters of smaller blood vessels in 4 patients. Diffuse deposit clusters were related to blood vessels in 3 patients. Primitive deposit clusters were either unrelated to or negatively correlated with the blood vessels in six patients. Hence, Aβ deposit subtypes differ in their relationship to blood vessels. The data suggest a direct and specific role for the larger blood vessels in the formation of amyloid cores in AD. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of the diffuse, primitive and classic beta-amyloid (Abeta) deposits and the incidence of large and small diameter blood vessels was studied in the upper laminae of the frontal cortex of 10 patients with sporadic Alzheimer’s disease (AD). The data were analysed using the partial correlation coefficient to determine whether variations in the density of Abeta deposit subtypes along the cortex were related to blood vessels. Significant correlations between the density of the diffuse or primitive Abeta deposits and blood vessels were found in only a small number of patients. However, the classic Abeta deposits were positively correlated with the large blood vessels in all 10 patients, the correlations remaining when the effects of gyral location and mutual correlations between Abeta deposits were removed. These results suggest that the larger blood vessels are involved specifically in the formation of the classic Abeta deposits and are less important in the formation of the diffuse and primitive deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar distribution of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in the frontal cortex of patients with Alzheimer’s disease (AD). In most patients, the density of the diffuse and primitive Abeta deposits was greatest in the upper cortical layers and the classic deposits in the deeper cortical layers. The distribution of the larger blood vessels (>10 micron in diameter) was often bimodal with peaks in the upper and deeper cortical layers. The incidence of capillaries (<10 micron) was significantly higher in the deeper cortical layers in most patients. Multiple regression analysis selected vertical distance below the pia mater as the most significant factor correlated with the Abeta deposit density. With the exception of the classic deposits in two patients, there was no evidence that these vertical distributions were related to laminar variations in the incidence of large or small blood vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. Methodology/Principal Findings - MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ~130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ~115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ~140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. Conclusions/Significance - These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether genetic factors influence frontal lobe degeneration in Alzheimer's disease (AD), the laminar distributions of diffuse, primitive, and classic β-amyloid (Aβ) peptide deposits were compared in early-onset familial AD (EO-FAD) linked to mutations of the amyloid precursor protein (APP) or presenilin 1 (PSEN1) gene, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The influence of apolipoprotein E (Apo E) genotype on laminar distribution was also studied. In the majority of FAD and SAD cases, maximum density of the diffuse and primitive Aβ deposits occurred in the upper cortical layers, whereas the distribution of the classic Aβ deposits was more variable, either occurring in the lower layers, or a double-peaked (bimodal) distribution was present, density peaks occurring in upper and lower layers. The cortical layer at which maximum density of Aβ deposits occurred and maximum density were similar in EO-FAD, LO-FAD and SAD. In addition, there were no significant differences in distributions in cases expressing Apo E ε4 alleles compared with cases expressing the ε2 or ε3 alleles. These results suggest that gene expression had relatively little effect on the laminar distribution of Aβ deposits in the frontal lobe of the AD cases studied. Hence, the pattern of frontal lobe degeneration in AD is similar regardless of whether it is associated with APP and PSEN1, mutation, allelic variation in Apo E, or with SAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schurz and Tholen (2016) argue that common approaches to studying the neural basis of “theory of mind” (ToM) obscure a potentially important role for inferior frontal gyrus (IFG) in managing conflict between perspectives, and urge new work to address this question: “to gain a full understanding of the IFG's role in ToM, we encourage future imaging studies to use a wider range of control conditions.” (p332). We wholeheartedly agree, but note that this observation has been made before, and has already led to a programme of work that provides evidence from fMRI, EEG, and TMS on the role of IFG in managing conflict between self and other perspectives in ToM. We highlight these works, and in particular we demonstrate how careful manipulation within ToM tasks has been used to act as an internal control condition, wherein conflict has been manipulated within-subject. We further add to the discussion by framing key questions that remain regarding IFG in the context of these. Using limitations in the existing research, we outline how best researchers can proceed with the challenge set by Schurz and Tholen (2016).