28 resultados para Distributed computer systems
Resumo:
With the advent of distributed computer systems with a largely transparent user interface, new questions have arisen regarding the management of such an environment by an operating system. One fertile area of research is that of load balancing, which attempts to improve system performance by redistributing the workload submitted to the system by the users. Early work in this field concentrated on static placement of computational objects to improve performance, given prior knowledge of process behaviour. More recently this has evolved into studying dynamic load balancing with process migration, thus allowing the system to adapt to varying loads. In this thesis, we describe a simulated system which facilitates experimentation with various load balancing algorithms. The system runs under UNIX and provides functions for user processes to communicate through software ports; processes reside on simulated homogeneous processors, connected by a user-specified topology, and a mechanism is included to allow migration of a process from one processor to another. We present the results of a study of adaptive load balancing algorithms, conducted using the aforementioned simulated system, under varying conditions; these results show the relative merits of different approaches to the load balancing problem, and we analyse the trade-offs between them. Following from this study, we present further novel modifications to suggested algorithms, and show their effects on system performance.
Resumo:
The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
Adaptability for distributed object-oriented enterprise frameworks in multimedia technology is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing systems. In this paper, we propose a Metalevel Component-Based Framework which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our approach of combining a meta-architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed multimedia applications. The proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address issues in the domain of distributed computing and they can be woven together to shape the framework in future. © 2011 Springer Science+Business Media B.V.
Resumo:
This research is concerned with the development of distributed real-time systems, in which software is used for the control of concurrent physical processes. These distributed control systems are required to periodically coordinate the operation of several autonomous physical processes, with the property of an atomic action. The implementation of this coordination must be fault-tolerant if the integrity of the system is to be maintained in the presence of processor or communication failures. Commit protocols have been widely used to provide this type of atomicity and ensure consistency in distributed computer systems. The objective of this research is the development of a class of robust commit protocols, applicable to the coordination of distributed real-time control systems. Extended forms of the standard two phase commit protocol, that provides fault-tolerant and real-time behaviour, were developed. Petri nets are used for the design of the distributed controllers, and to embed the commit protocol models within these controller designs. This composition of controller and protocol model allows the analysis of the complete system in a unified manner. A common problem for Petri net based techniques is that of state space explosion, a modular approach to both the design and analysis would help cope with this problem. Although extensions to Petri nets that allow module construction exist, generally the modularisation is restricted to the specification, and analysis must be performed on the (flat) detailed net. The Petri net designs for the type of distributed systems considered in this research are both large and complex. The top down, bottom up and hybrid synthesis techniques that are used to model large systems in Petri nets are considered. A hybrid approach to Petri net design for a restricted class of communicating processes is developed. Designs produced using this hybrid approach are modular and allow re-use of verified modules. In order to use this form of modular analysis, it is necessary to project an equivalent but reduced behaviour on the modules used. These projections conceal events local to modules that are not essential for the purpose of analysis. To generate the external behaviour, each firing sequence of the subnet is replaced by an atomic transition internal to the module, and the firing of these transitions transforms the input and output markings of the module. Thus local events are concealed through the projection of the external behaviour of modules. This hybrid design approach preserves properties of interest, such as boundedness and liveness, while the systematic concealment of local events allows the management of state space. The approach presented in this research is particularly suited to distributed systems, as the underlying communication model is used as the basis for the interconnection of modules in the design procedure. This hybrid approach is applied to Petri net based design and analysis of distributed controllers for two industrial applications that incorporate the robust, real-time commit protocols developed. Temporal Petri nets, which combine Petri nets and temporal logic, are used to capture and verify causal and temporal aspects of the designs in a unified manner.
Resumo:
The computer systems of today are characterised by data and program control that are distributed functionally and geographically across a network. A major issue of concern in this environment is the operating system activity of resource management for different processors in the network. To ensure equity in load distribution and improved system performance, load balancing is often undertaken. The research conducted in this field so far, has been primarily concerned with a small set of algorithms operating on tightly-coupled distributed systems. More recent studies have investigated the performance of such algorithms in loosely-coupled architectures but using a small set of processors. This thesis describes a simulation model developed to study the behaviour and general performance characteristics of a range of dynamic load balancing algorithms. Further, the scalability of these algorithms are discussed and a range of regionalised load balancing algorithms developed. In particular, we examine the impact of network diameter and delay on the performance of such algorithms across a range of system workloads. The results produced seem to suggest that the performance of simple dynamic policies are scalable but lack the load stability of more complex global average algorithms.
Resumo:
Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.
Resumo:
Modern distributed control systems comprise of a set of processors which are interconnected using a suitable communication network. For use in real-time control environments, such systems must be deterministic and generate specified responses within critical timing constraints. Also, they should be sufficiently robust to survive predictable events such as communication or processor faults. This thesis considers the problem of coordinating and synchronizing a distributed real-time control system under normal and abnormal conditions. Distributed control systems need to periodically coordinate the actions of several autonomous sites. Often the type of coordination required is the all or nothing property of an atomic action. Atomic commit protocols have been used to achieve this atomicity in distributed database systems which are not subject to deadlines. This thesis addresses the problem of applying time constraints to atomic commit protocols so that decisions can be made within a deadline. A modified protocol is proposed which is suitable for real-time applications. The thesis also addresses the problem of ensuring that atomicity is provided even if processor or communication failures occur. Previous work has considered the design of atomic commit protocols for use in non time critical distributed database systems. However, in a distributed real-time control system a fault must not allow stringent timing constraints to be violated. This thesis proposes commit protocols using synchronous communications which can be made resilient to a single processor or communication failure and still satisfy deadlines. Previous formal models used to design commit protocols have had adequate state coverability but have omitted timing properties. They also assumed that sites communicated asynchronously and omitted the communications from the model. Timed Petri nets are used in this thesis to specify and design the proposed protocols which are analysed for consistency and timeliness. Also the communication system is mcxielled within the Petri net specifications so that communication failures can be included in the analysis. Analysis of the Timed Petri net and the associated reachability tree is used to show the proposed protocols always terminate consistently and satisfy timing constraints. Finally the applications of this work are described. Two different types of applications are considered, real-time databases and real-time control systems. It is shown that it may be advantageous to use synchronous communications in distributed database systems, especially if predictable response times are required. Emphasis is given to the application of the developed commit protocols to real-time control systems. Using the same analysis techniques as those used for the design of the protocols it can be shown that the overall system performs as expected both functionally and temporally.
Resumo:
The CONNECT European project that started in February 2009 aims at dropping the interoperability barrier faced by today’s distributed systems. It does so by adopting a revolutionary approach to the seamless networking of digital systems, that is, synthesizing on the fly the connectors via which networked systems communicate.
Resumo:
The behaviour of self adaptive systems can be emergent. The difficulty in predicting the system's behaviour means that there is scope for the system to surprise its customers and its developers. Because its behaviour is emergent, a self-adaptive system needs to garner confidence in its customers and it needs to resolve any surprise on the part of the developer during testing and mainteinance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system's behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, a means needs to be found to explain the current behaviour of the system and the reasons that brought that behaviour about. We propose the use of goal-based models during runtime to offer self-explanation of how a system is meeting its requirements, and why the means of meeting these were chosen. We discuss the results of early experiments in self-explanation, and set out future work. © 2012 C.E.S.A.M.E.S.
Resumo:
This thesis is a study of performance management of Complex Event Processing (CEP) systems. Since CEP systems have distinct characteristics from other well-studied computer systems such as batch and online transaction processing systems and database-centric applications, these characteristics introduce new challenges and opportunities to the performance management for CEP systems. Methodologies used in benchmarking CEP systems in many performance studies focus on scaling the load injection, but not considering the impact of the functional capabilities of CEP systems. This thesis proposes the approach of evaluating the performance of CEP engines’ functional behaviours on events and develops a benchmark platform for CEP systems: CEPBen. The CEPBen benchmark platform is developed to explore the fundamental functional performance of event processing systems: filtering, transformation and event pattern detection. It is also designed to provide a flexible environment for exploring new metrics and influential factors for CEP systems and evaluating the performance of CEP systems. Studies on factors and new metrics are carried out using the CEPBen benchmark platform on Esper. Different measurement points of response time in performance management of CEP systems are discussed and response time of targeted event is proposed to be used as a metric for quality of service evaluation combining with the traditional response time in CEP systems. Maximum query load as a capacity indicator regarding to the complexity of queries and number of live objects in memory as a performance indicator regarding to the memory management are proposed in performance management of CEP systems. Query depth is studied as a performance factor that influences CEP system performance.
Resumo:
Most current 3D landscape visualisation systems either use bespoke hardware solutions, or offer a limited amount of interaction and detail when used in realtime mode. We are developing a modular, data driven 3D visualisation system that can be readily customised to specific requirements. By utilising the latest software engineering methods and bringing a dynamic data driven approach to geo-spatial data visualisation we will deliver an unparalleled level of customisation in near-photo realistic, realtime 3D landscape visualisation. In this paper we show the system framework and describe how this employs data driven techniques. In particular we discuss how data driven approaches are applied to the spatiotemporal management aspect of the application framework, and describe the advantages these convey.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.
Resumo:
Previous research has indicated that the majority of the UK dentate population suffers from dental disease. This problem was examined in terms of the supply of, and demand for, dental treatment: how might the uptake of dental services be increased and dental health improved? The target population for the main survey was adolescents among whom demand for dental treatment has decreased. In 524 adolescents surveyed, fear of pain was the major deterrent to regular dental visits. The theoretical literature was explored for illuminating and practical approaches to the problem. The theory of reasoned action developed by Fishbein seemed the most promising. This theory was tested and validated on the adolescent sample identifying clear differences between regular and irregular dental attenders which could be usefully exploited by dental health education. A repertory grid analysis study further illuminated perceptions of dental treatment. A survey of a random sample of 716 dentists revealed that most dentists were in favour of delegating work to auxiliary help but few could do so. Auxiliary help would increase supply of services: data revealed an encouraging trend for younger dentists to be more in favour of delegation than older dentists. A survey was carried out of computer systems available for dentists suggesting that this might reduce the need for clerical assistance but would not ususally affect the supply of treatment. However in some dental practices computerisation might increase demand. For example a personalised reminder was developed and evaluated in a controlled study of 938 appointments demonstrating an uptake in dental services. Conclusions are that demand for treatment can be increased in various ways especially by teaching dentists' behavioural strategies to deal with fear and pain. Various recommendations on this are made. If demand were to outstrip supply increased delegation to auxiliary help could provide a viable way of increasing supply.