22 resultados para Disease transmission, vertical


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuronal intermediate filament inclusion disease (NIFID) is characterized by α-internexin positive neuronal cytoplasmic inclusions (NCI), swollen achromatic neurons (SN), neuronal loss, and gliosis. This study tested: 1) whether the spatial patterns of the lesions was topographically organized in areas of the frontal and temporal lobe and 2) whether a spatial relationship exists between the NCI and SN. The NCI were distributed in regular clusters and in a quarter of these areas, the clusters were 400-800 μm in diameter approximating to the size of the cells of origin of the cortico-cortical pathways. Variations in the density of the NCI were positively correlated with the SN. Hence, cortical degeneration in NIFID appears to be topographically organized and may affect the cortico-cortical projections, the clusters of NCI and SN developing within the same vertical columns of cells. © 2007 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 10% of patients with Creutzfeldt-Jakob syndrome (disease) (CJD) exhibit visual symptoms at presentation and approximately 50% during the course of the disease. The objectives of the present study were to determine, in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD), the degree of pathological change in the primary visual cortex (area V1) and the extent to which pathology in V1 may influence visual function. The vacuolation (‘spongiform change’), surviving neurons, glial cell nuclei, and deposits of prion protein (PrP) were quantified in V1 obtained post-mortem in nine cases of sCJD and eleven cases of vCJD. In sCJD, the vacuoles and PrP deposits were regularly distributed along the cortex parallel to the pia mater in clusters with a mean dimension from 450 to 1000 µm. Across the cortex, the vacuolation was most severe in laminae II/III and the glial cell reaction in laminae V/VI. Surviving neurons were most abundant in laminae II/III while PrP deposition either affected all laminae equally or was maximal in lamina II/III. In vCJD, the vacuoles and diffuse PrP deposits were distributed relatively uniformly parallel to the pia mater while the florid deposits were consistently distributed in regular clusters. Across V1, the vacuoles either exhibited a bimodal distribution or were uniformly distributed. The diffuse PrP deposits occurred most frequently in laminae II/III while the florid deposits were more generally distributed. The data suggest that in both sCJD and vCJD, pathological changes in area V1 may affect the processing of visual information in laminae II/III and its transmission from V1 to V2 and to subcortical visual areas. In addition, the data suggest an association in sCJD between the developing pathology and the functional domains of V1 while in vCJD the pathology is more uniformly distributed. These changes could be a factor in the development of poor visual acuity, visual field defects, cortical blindness, diplopia, and vertical gaze palsy that have been observed in Creutzfeldt-Jakob syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laminar distribution of the neurofilament inclusions (NI) and swollen achromatic neurons (SN) was studied in gyri of the temporal cortex in four patients with neurofilament inclusion disease (NID). In 84% of gyri analysed, the density of the NI was maximal in the lower cortical laminae. The distribution of the SN was more variable than the NI. Density was maximal in the lower cortex in 46% of gyri, in the upper cortical laminae in 8% of gyri, and a bimodal distribution in 15% of gyri. In the remaining gyri, there was a more even distribution of SN with cortical depth. In 31% of gyri, the vertical density of the NI was positively correlated with that of the SN. The data suggest that cortical degeneration in the temporal lobe of NID initially affects neurons in the lower laminae. Subsequently, the pathology may spread to affect much of the cortical profile, the SN preceding the appearance of the NI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review describes a group of diseases known as the transmissible spongiform encephalopathies (TSEs), which affect animals and humans. Examination of affected brain tissue suggests that these diseases are caused by the acquisition and deposition of prion protein (PrP). Creutzfeldt-Jakob disease (CJD) is the most important form of TSE in humans with at least four different varieties of the disease. Variant CJD (vCJD), a new form of the disease found in the UK, has several features that differ from the classical forms including early age of onset, longer duration of disease, psychiatric presentation (for example, depression) and extensive florid plaque development in the brain. About 10 per cent of patients with CJD exhibit visual symptoms at disease presentation and approximately 50 per cent during the course of the disease. The most commonly reported visual symptoms include diplopia, supranuclear palsies, complex visual disturbances, homonymous visual field defects, hallucinations and cortical blindness. Saccadic and smooth pursuit movements appear to be more rarely affected. The agent causing vCJD accumulates in lymphoid tissue such as the spleen and tonsils. The cornea has lymphoid tissue in the form of corneal dendritic cells that are important in the regulation of the immune response in the anterior segment of the eye. The presence of these cells in the cornea has raised the possibility of transmission between patients via optical devices that contact the eye. Although such transmission is theoretically possible it remains highly improbable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laminar distribution of the vacuolation ('spongiform change'), surviving neurons, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). The distribution of the vacuolation was mainly bimodal with peaks of density in the upper and lower cortical laminae. The density of surviving neurons was greatest in the upper cortex while glial cell nuclei were distributed largely in the lower cortex. PrP deposits exhibited either a bimodal distribution or reached a maximum density in the lower cortex. The vertical density of the vacuoles was positively correlated with the surviving neurons in 12/44 of cortical areas studied, with glial cell nuclei in 16/44 areas and with PrP deposition in 15/28 areas. PrP deposits were positively correlated with glial cell nuclei in 12/31 areas. These results suggest that in sporadic CJD: (1) the lower cortical laminae are the most affected by the pathological changes; (2) the development of the vacuolation may precede that of the extracellular PrP deposits and the glial cell reaction; and (3) the pathological changes may develop initially in the lower cortical laminae and spread to affect the upper cortical laminae. © 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ten cases of neuronal intermediate filament inclusion disease (NIFID) were studied quantitatively. The α-internexin positive neurofilament inclusions (NI) were most abundant in the motor cortex and CA sectors of the hippocampus. The densities of the NI and the swollen achromatic neurons (SN) were similar in laminae II/III and V/VI but glial cell density was greater in V/VI. The density of the NI was positively correlated with the SN and the glial cells. Principal components analysis (PCA) suggested that PC1 was associated with variation in neuronal loss in the frontal/temporal lobes and PC2 with neuronal loss in the frontal lobe and NI density in the parahippocampal gyrus. The data suggest: 1) frontal and temporal lobe degeneration in NIFID is associated with the widespread formation of NI and SN, 2) NI and SN affect cortical laminae II/III and V/VI, 3) the NI and SN affect closely related neuronal populations, and 4) variations in neuronal loss and in the density of NI were the most important sources of pathological heterogeneity. © Springer-Verlag 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal neuronal intermediate filament (IF) inclusions immunopositive for the type IV IF α-internexin have been identified as the pathological hallmark of neuronal intermediate filament inclusion disease (NIFID). We studied the topography of these inclusions in the frontal and temporal lobe in 68 areas from 10 cases of NIFID. In the cerebral cortex, CA sectors of the hippocampus, and dentate gyrus granule cell layer, the inclusions were distributed mainly in regularly distributed clusters, 50-800 μm in diameter. In seven cortical areas, there was a more complex pattern in which the clusters of inclusions were aggregated into larger superclusters. In 11 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the majority of the remaining areas, cluster size was smaller than 400 μm. The topography of the lesions suggests that there is degeneration of the cortico-cortical projections in NIFID with the formation of α-internexin-positive aggregates within vertical columns of cells. Initially, only a subset of cells within a vertical column develops inclusions but as the disease progresses, the whole of the column becomes affected. The corticostriate projection appears to have little effect on the cortical topography of the inclusions. © 2006 EFNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency distribution of aggregate size of the diffuse and florid-type prion protein (PrP) plaques was studied in various brain regions in cases of variant Creutzfeldt-Jakob disease (vCJD). The size distributions were unimodal and positively skewed and resembled those of β-amyloid (Aβ) deposits in Alzheimer's disease (AD) and Down's syndrome (DS). The frequency distributions of the PrP aggregates were log-normal in shape, but there were deviations from the expected number of plaques in specific size classes. More diffuse plaques were observed in the modal size class and fewer in the larger size classes than expected and more florid plaques were present in the larger size classes compared with the log-normal model. It was concluded that the growth of the PrP aggregates in vCJD does not strictly follow a log-normal model, diffuse plaques growing to within a more restricted size range and florid plaques to larger sizes than predicted. © Springer-Verlag 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal intermediate filament (IF) inclusion disease (NIFID) is characterized by neuronal loss, neuronal cytoplasmic IF-positive inclusions (NI), swollen neurons (SN), and a glial cell reaction. We studied the spatial correlations between the clusters of NI, SN, and glial cells in four gyri of the temporal lobe (superior temporal gyrus, inferior temporal gyrus, lateral occipitotemporal gyrus, and parahippocampal gyrus) in four cases of NIFID. The densities of histological features (per 50x250 μ sample field) were as follows: NI (mean = 0.41, range 0.28-0.68), SN (mean = 1.41, range 0.47-2.65), glial cell nuclei (mean = 5.21, range 3.63-8.17). The NI and the SN were positively correlated in half of the brain regions examined, the correlations being present at the smallest field size (50x250 μm). The NI were also positively or negatively correlated with the glial cell nuclei in different areas, the negative correlations being present at the smallest field size. Glial cell nuclei were positively or negatively correlated with the SN in different brain areas, mainly at the larger field sizes (400x250 and 800x250 μm). The spatial correlation between the clusters of NI and SN in the cortex suggests their development within the same columns of cells. At first, the glial cell reaction is also confined to these columns but later becomes more generally distributed across the cortex. © Springer-Verlag 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To determine the degree of pathological change in the primary visual cortex (area V1) in patients with Creutzfeldt-Jakob disease. Method. The vacuolation, surviving neurons, glial cells, and deposits of prion protein were quantified in area V1 obtained postmortem in nine cases of the sporadic type of Creutzfeldt-Jakob disease. Results. Variations in the density of glial cells and in prion protein deposition were particularly evident between patients. In the upper and lower cortical laminae, vacuoles and prion protein deposits were regularly distributed in clusters with a mean dimensions of 450 to 1000 µm. Vacuolation in area V1 was most severe in lamina III and the glial cell reaction in lamina V or VI. Surviving neurons were most abundant in lamina II or III, whereas prion protein deposition either affected all laminae equally or was maximal in lamina II or III. Conclusion. The data suggest that pathological changes in area V1 in sporadic type of Creutzfeldt-Jakob disease may affect the transmission of visual information from area V1 to V2 and to subcortical visual areas. In addition, the data suggest an association between the developing pathology and the functional domains of area V1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lesions in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) have distinct laminar distributions in the cortex. The objective of the present study was to test the hypothesis that the lesions characteristic of Pick's disease (PD) and AD have distinctly different laminar distributions in cases of PD. Hence, the laminar distribution of Pick bodies (PB), Pick cells (PC), senile plaques (SP) and neurofibrillary tangles (NFT) was studied in the frontal and temporal cortex in nine patients with PD. In 57% of analyses of individual cortical areas, the density of PB was maximal in the upper cortex while in 25% of analyses, the distribution of PB was bimodal with density peaks in the upper and lower cortex. The density of PC was maximal in the lower cortex in 77% of analyses while a bimodal distribution was present in 5% of analyses. The density of NFT was maximal in the upper cortex in 50% of analyses, in the lower cortex in 15% of analyses, with a bimodal distribution in 4% of analyses. The density of SP did not vary significantly with cortical depth in 86% of analyses. The vertical densities of PB and PC were negatively correlated in 12/21 (57%) of brain areas. The maximum density of PB in the upper cortex was positively correlated with the maximum density of PC in the lower cortex. In 17/25 (68%) of brain areas, there was no significant correlation between the vertical densities of PB and NFT. The data suggest that the pathogenesis of PB may be related to that of the PC. In addition, although in many areas PB and NFT occur predominantly in the upper cortex, the two lesions appeared to affect different neuronal populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laminar distribution of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in the frontal cortex of patients with Alzheimer’s disease (AD). In most patients, the density of the diffuse and primitive Abeta deposits was greatest in the upper cortical layers and the classic deposits in the deeper cortical layers. The distribution of the larger blood vessels (>10 micron in diameter) was often bimodal with peaks in the upper and deeper cortical layers. The incidence of capillaries (<10 micron) was significantly higher in the deeper cortical layers in most patients. Multiple regression analysis selected vertical distance below the pia mater as the most significant factor correlated with the Abeta deposit density. With the exception of the classic deposits in two patients, there was no evidence that these vertical distributions were related to laminar variations in the incidence of large or small blood vessels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variant Creutzfeldt-Jakob disease (vCJD) was first described in the UK in 1996 and is one of a group of diseases, the transmissible spongiform encephalopathies (TSEs) which affect both animals and humans. This review discusses vCJD in the context of other TSEs, considers the controversial 'prion' hypothesis as to the cause of the disease, the ocular features of vCJD, and the possible transmission of the disease via optoetric devices.