35 resultados para Dehydration.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Dynamic retinal vessel analysis represents a well-established method for the assessment of vascular reactivity during both normal conditions and after various provocations. We present a case where the subject showed abnormal retinal vessel reactivity after fasting voluntarily for 20 hours. CASE PRESENTATION: A healthy, 21-year-old man who fasted voluntarily for 20 hours exhibited abnormal retinal vascular reactivity (dilation and constriction) after flicker provocation as measured using the Dynamic Retinal Vessel Analyser (Imedos, Jena, Germany). CONCLUSION: The abnormal vascular reactivity induced by fasting was significant; abnormal levels of important nutrients due to fasting and dehydration could play a role through altering the concentration of vasoactive substances such as nitric oxide. This hypothesis needs further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of the thesis is to provide a comprehensive investigation of the osmotic dehydration processes in plant tissue. Effort has been concentrated on the modelling for simulating the processes. Two mathematical models for simulating the mass transfer during osmotic dehydration processes in plant tissues are developed and verified using existing experimental data. Both models are based on the mechanism of diffusion and convection of any mobile material that can transport in plant tissues. The mass balance equation for the transport of each constituent is established separately for intracellular and extra-cellular volumes with taking into account the mass transfer across the cell membrane the intracellular and extra-cellular volumes and the shrinkage of the whole tissue. The contribution from turgor pressure is considered in both models. Model two uses Darcy’s law to build the relation between shrinkage velocity and hydrostatic pressure in each volume because the plant tissue can be considered as the porous medium. Moreover, it has been extended to solve the multi-dimensional problems. A lot of efforts have been made to the parameter study and the sensitivity analyses. The parameters investigated including the concentration of the osmotic solution, diffusion coefficient, permeability of the cell membrane, elastic modulus of the cell wall, critical cell volume etc. The models allow us to quantitatively simulate the time evolution of intracellular and extra-cellular volumes as well as the time evolution of concentrations in each cross-section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption), as well as with ammonia adsorption microcalorimetry. Good results are obtained with initial glycerol conversions of over 70% and with 50-70% selectivity to acrolein. We investigate the influence of changing the catalyst acid strength by varying the niobia content and catalyst calcination temperature. Glycerol conversion and acrolein selectivity depend on the surface acid strength. Catalyst deactivation by coking is also observed, but simple oxidative treatment in air restores the activity of the catalysts completely. © The Author(s) 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to investigate the various parameters that could control the encapsulation of lipophilic drugs and investigate the influence of the physical properties of poorly water-soluble drugs on bilayer loading. Initial work investigated on the solubilisation of ibuprofen, a model insoluble drug. Drug loading was assessed using HPLC and UV spectrophotometric analysis. Preliminary studies focused on the influence of bilayer composition on drug loading to obtain an optimum cholesterol concentration. This was followed up by studies investigating the effect of longer alkyl chain lipids, unsaturated alkyl chain lipids and charged lipids. The studies also focused on the effects of pH of the hydration medium and addition of the single chain surfactant a-tocopherol. The work was followed up by investigation of a range of insoluble drugs including flurbiprofen, indomethacin, sulindac, mefenamic acid, lignocaine and progesterone to investigate the influence of drugs properties and functional group on liposomal loading. The results show that no defined trend could be obtained linking the drug loading to the different drug properties including molecular weight, log P and other drug specific characteristics. However, the presence of the oppositely charged lipids improved the encapsulation of all the drugs investigated with a similar effect obtained with the substitution of the longer chain lipids. The addition of the single chain surfactant a-tocopherol resulted in enhancement of drug loading and possibly is governed by the log P of the drug candidate. Environmental scanning-electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology in real time during dehydration thereby providing a alternative assay of liposome formulation and stability. The ESEM analysis clearly demonstrated ibuprofen incorporation enhanced the stability of PC:Chol liposomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.