32 resultados para Data structures
Resumo:
The design and implementation of data bases involve, firstly, the formulation of a conceptual data model by systematic analysis of the structure and information requirements of the organisation for which the system is being designed; secondly, the logical mapping of this conceptual model onto the data structure of the target data base management system (DBMS); and thirdly, the physical mapping of this structured model into storage structures of the target DBMS. The accuracy of both the logical and physical mapping determine the performance of the resulting systems. This thesis describes research which develops software tools to facilitate the implementation of data bases. A conceptual model describing the information structure of a hospital is derived using the Entity-Relationship (E-R) approach and this model forms the basis for mapping onto the logical model. Rules are derived for automatically mapping the conceptual model onto relational and CODASYL types of data structures. Further algorithms are developed for partly automating the implementation of these models onto INGRES, MIMER and VAX-11 DBMS.
Resumo:
Marketing scholars are increasingly recognizing the importance of investigating phenomena at multiple levels. However, the analyses methods that are currently dominant within marketing may not be appropriate to dealing with multilevel or nested data structures. We identify the state of contemporary multilevel marketing research, finding that typical empirical approaches within marketing research may be less effective at explicitly taking account of multilevel data structures than those in other organizational disciplines. A Monte Carlo simulation, based on results from a previously published marketing study, demonstrates that different approaches to analysis of the same data can result in very different results (both in terms of power and effect size). The implication is that marketing scholars should be cautious when analyzing multilevel or other grouped data, and we provide a discussion and introduction to the use of hierarchical linear modeling for this purpose.
Resumo:
Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographicmaps, and this topic remains an active focus of neurocomputational research. The representational capabilities and internal representations of the models are not well understood. Here, we rigorously analyze a generalization of the self-organizingmap (SOM) for processing sequential data, recursive SOM (RecSOM) (Voegtlin, 2002), as a nonautonomous dynamical system consisting of a set of fixed input maps. We argue that contractive fixed-input maps are likely to produce Markovian organizations of receptive fields on the RecSOM map. We derive bounds on parameter β (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed-input maps is guaranteed. Some generalizations of SOM contain a dynamic module responsible for processing temporal contexts as an integral part of the model. We show that Markovian topographic maps of sequential data can be produced using a simple fixed (nonadaptable) dynamic module externally feeding a standard topographic model designed to process static vectorial data of fixed dimensionality (e.g., SOM). However, by allowing trainable feedback connections, one can obtain Markovian maps with superior memory depth and topography preservation. We elaborate on the importance of non-Markovian organizations in topographic maps of sequential data. © 2006 Massachusetts Institute of Technology.
Resumo:
Recently, there has been a considerable research activity in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, the representational capabilities and internal representations of the models are not well understood. We rigorously analyze a generalization of the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as a non-autonomous dynamical system consisting off a set of fixed input maps. We show that contractive fixed input maps are likely to produce Markovian organizations of receptive fields o the RecSOM map. We derive bounds on parameter $\beta$ (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed input maps is guaranteed.
Resumo:
A graphical process control language has been developed as a means of defining process control software. The user configures a block diagram describing the required control system, from a menu of functional blocks, using a graphics software system with graphics terminal. Additions may be made to the menu of functional blocks, to extend the system capability, and a group of blocks may be defined as a composite block. This latter feature provides for segmentation of the overall system diagram and the repeated use of the same group of blocks within the system. The completed diagram is analyzed by a graphics compiler which generates the programs and data structure to realise the run-time software. The run-time software has been designed as a data-driven system which allows for modifications at the run-time level in both parameters and system configuration. Data structures have been specified to ensure efficient execution and minimal storage requirements in the final control software. Machine independence has been accomodated as far as possible using CORAL 66 as the high level language throughout the entire system; the final run-time code being generated by a CORAL 66 compiler appropriate to the target processor.
Resumo:
The increasing cost of developing complex software systems has created a need for tools which aid software construction. One area in which significant progress has been made is with the so-called Compiler Writing Tools (CWTs); these aim at automated generation of various components of a compiler and hence at expediting the construction of complete programming language translators. A number of CWTs are already in quite general use, but investigation reveals significant drawbacks with current CWTs, such as lex and yacc. The effective use of a CWT typically requires a detailed technical understanding of its operation and involves tedious and error-prone input preparation. Moreover, CWTs such as lex and yacc address only a limited aspect of the compilation process; for example, actions necessary to perform lexical symbol valuation and abstract syntax tree construction must be explicitly coded by the user. This thesis presents a new CWT called CORGI (COmpiler-compiler from Reference Grammar Input) which deals with the entire `front-end' component of a compiler; this includes the provision of necessary data structures and routines to manipulate them, both generated from a single input specification. Compared with earlier CWTs, CORGI has a higher-level and hence more convenient user interface, operating on a specification derived directly from a `reference manual' grammar for the source language. Rather than developing a compiler-compiler from first principles, CORGI has been implemented by building a further shell around two existing compiler construction tools, namely lex and yacc. CORGI has been demonstrated to perform efficiently in realistic tests, both in terms of speed and the effectiveness of its user interface and error-recovery mechanisms.
Resumo:
Humans consciously and subconsciously establish various links, emerge semantic images and reason in mind, learn linking effect and rules, select linked individuals to interact, and form closed loops through links while co-experiencing in multiple spaces in lifetime. Machines are limited in these abilities although various graph-based models have been used to link resources in the cyber space. The following are fundamental limitations of machine intelligence: (1) machines know few links and rules in the physical space, physiological space, psychological space, socio space and mental space, so it is not realistic to expect machines to discover laws and solve problems in these spaces; and, (2) machines can only process pre-designed algorithms and data structures in the cyber space. They are limited in ability to go beyond the cyber space, to learn linking rules, to know the effect of linking, and to explain computing results according to physical, physiological, psychological and socio laws. Linking various spaces will create a complex space — the Cyber-Physical-Physiological-Psychological-Socio-Mental Environment CP3SME. Diverse spaces will emerge, evolve, compete and cooperate with each other to extend machine intelligence and human intelligence. From multi-disciplinary perspective, this paper reviews previous ideas on various links, introduces the concept of cyber-physical society, proposes the ideal of the CP3SME including its definition, characteristics, and multi-disciplinary revolution, and explores the methodology of linking through spaces for cyber-physical-socio intelligence. The methodology includes new models, principles, mechanisms, scientific issues, and philosophical explanation. The CP3SME aims at an ideal environment for humans to live and work. Exploration will go beyond previous ideals on intelligence and computing.
Resumo:
Formulating complex queries is hard, especially when users cannot understand all the data structures of multiple complex knowledge bases. We see a gap between simplistic but user friendly tools and formal query languages. Building on an example comparison search, we propose an approach in which reusable search components take an intermediary role between the user interface and formal query languages.
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.
Resumo:
The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.
Resumo:
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.