19 resultados para D-glucose
Resumo:
Obesity and insulin resistance are important risk factors for atherosclerosis, and elevated level of plasma NEFA is a common feature in individuals with obesity and insulin resistance. Palmitate, one of the most abundant non-esterified SFA in plasma, has been reported to induce insulin resistance in adipose tissues and skeletal muscles and to cause an increased inflammatory response in monocytes. The present study investigated whether palmitate can induce insulin resistance in monocytes and its effect on monocyte adhesion molecular expression (CD11b). Insulin resistance was measured by in vitro uptake of insulin-stimulated 3H-labelled 2-deoxy-D-glucose into THP-1 cells, cell surface CD11b expression was measured by flow cytometry. The data showed that palmitate-induced insulin resistance in THP-1 monocytes was concentration and time dependent (Figure 1). The insulin-stimulated glucose uptake was significantly decreased in cells treated with 300 mM-palmitate compared with control cells (P<0.001) and was observed within 6 h, but was not a result of palmitate toxicity. There was no significant increase in caspase 3 activation (P>0.05). Treatment with 300 mM-palmitate for 24 h also caused a significant increase in surface CD11b expression in both U937 and THP-1 monocytic cell lines and human primary monocytes compared with the control (P<0.001). Both these effects were inhibited by co-incubation with Fumonisin B1, an inhibitor of de novo ceramide synthesis. In conclusion, these data show that palmitate, at physiological concentrations, can cause insulin resistance in monocytes and increase monocyte surface integrin CD11b expression, which is in part the result of the synthesis of ceramide.
Resumo:
Three species of filamentous fungi, Botrytis cinerea, Sporotrichum thermophile and Trichoderma viride, have been selected to assess the potential of utilizing filamentous fungi to degrade plant cell biomass produced by mass cell culture techniques. All three fungal species grew comparatively well on plant cell biomass with no requirement for supplementary nutrients. Of the three species assessed B. cinerea demonstrated the most growth. This species also produced the greatest yield of D-glucose. However, when culture conditions were modified, yields of D-glucose were markedly reduced indicating that the combination of species and culture conditions must be thoroughly investigated to ensure maximum product yield. The growth of filamentous fungi on plant cells also markedly affected the nature of the resulting fungal-plant cell residue, increasing the levels of soluble carbohydrates and essential amino acids with the largest increase in these materials being promoted by B. cinerea.
Resumo:
Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.
Resumo:
Absorption across the gastro-intestinal epithelium is via two pathways; the transcellular and paracellular pathway. Caco-2 cells, when cultured on polycarbonate filters, formed a confluent monolayer with many properties of differentiated intestinal epithelial cells, As a model of human gastro-intestinaJ tract epithelia they were used to elucidate and characterise the transepithelial transport of two protein kinase C inhibitors, N-(3-chlorophenyl)-4-[2-(3-hydroxypropylamino)-4-pyridyl]-2-pyrimidinamin (CHPP) and N-benzoyl-staurosporine (NBS), and the polypeptide, human calcitonin. Lanthanum ions are proposed as a paracellular pathway inhibitor and tested with D-mannitol permeability and transepithelial electrical resistance measurements. The effect La3+ has on the carrier-mediated transport of D-glucose and Sodium taurocholate as well as the vesicularly transcytosed horseradish peroxidase was also investigated. As expected, 2 mM apical La3+ increases transepithelial electrical resistance 1.S-fold and decreases mannitol permeability by 63.0 % ± 1.37 %. This inhibition was not repeated by other cations. Apical 2 mM La3+ was found to decrease carrier-mediated D-glucose and taurocholate permeability by only 8.7 % ± 1.6 %, 26.3 % ± 5.0 %. There was no inhibitory effect on testosterone or PEG 4000 permeability observed with La3+. However, for horseradish peroxidase and human calcitonin permeability was decreased by 98.7 % ± 11.7%, and 96.2 % ± 0.8 % respectively by 2 mM La3+. Indicating that human calcitonin could also be transported by vesicular transcytosis. The addition of 2 mM La3+ to the apical surface of Caco-2 monolayers produces a paracellular pathway inhibition. Therefore, La3+ could be a useful additional tool in delineating the transepithelial pathway of passive drug absorption.
Resumo:
The transport of a group of quinolone antibiotics across the human intestinal model, Caco-2 cells, was investigated. It was found that the transport of the quinolones generally correlated with the lipophilicity of the compounds, indicating the passive diffusional transcellular processes were involved. However, it was observed that the transport in both directions apical-to-basolateral and basolateral-to-apical was not equivalent, and polarised transport occurred. For all the quinolones studied except, BMS-284756-01, it was found that the basolateral-to-apical transport was significantly greater than the apical-to-basolateral transport. This finding suggested that the quinolones underwent a process of active secretion. The pKas and logPs for the quinolones were determined using potentiometric titrations. The measured logP values were compared with those determined using theoretical methods. The theoretical methods for calculating logP including the Moriguchi method correlated poorly with the measured logP values. Further investigations revealed that there may be an active transporter involved in the apical-to-basolateral transport of quinolones as well. This mechanism was sensitive to competing quinolones, but, it was unaffected by the metabolic inhibitor combination of sodium azide (15mM) with 2-deoxy-D-glucose (50mM). The basolateral-to-apical transport of quinolones was found to be sensitive to inhibition by a number of different inhibitors. The metabolic inhibitors, sodium azide (15mM) with 2-deoxy-D-glucose (50mM) and 2,4-dinitrophenol (1mM), were able to reduce the basolateral-to-apical transport of quinolones. A reduction in temperature from 37°C to 2°C caused an 80-fold decrease in the transport of gatifloxacin in both directions, however, this effect was not sufficient to abolish the greater basolateral-to-apical secretion. As with apical-to-basolateral transport, it was found that quinolones competed with gatifloxacin for basolateral-to-apical transport, both ofloxacin (100μM) and norfloxacin (100μM) significantly (P<0.003) decreased the basolateral-to-apical transport of gatifloxacin; however, ciprofloxacin (100μM and 300μM) had no effect. A number of inhibitors of various transport systems were also investigated. It was found that the anion transport inhibitor, probenecid (100 μM) had a significant inhibitory effect on the basolateral-to-apical transport of ciprofloxacin (P=0.039), while the cation transport inhibitor cimetidine (100μM and 500μM) had no effect. The organic anion exchange inhibitor 4,4'diisothiocyanostilbene-2-2' -disulphonic acid DIDS (400μM) also had a significant inhibitory effect (P=O.O 13). The PgP inhibitor and anion exchange inhibitor verapamil (400Mμ) was able to completely abolish the basolateral-to-apical secretion of gatifloxacin and bring it into line with the apical-to-basolateral flux. In conclusion, the apical-to-basolateral and basolateral-toapical transport of quinolones involved an active component. The basolateral-to-apical secretion was abolished by a verapamil (400μM), a bisubstrate for PgP and the anion transporter.
Resumo:
Background: Glucosamine increases flux through the hexosamine pathway, causing insulin resistance and disturbances similar to diabetic glucose toxicity. Aim: This study examines the effect of glucosamine on glucose uptake by cultured L6 muscle cells as a model of insulin resistance. Methods: Glucose uptake by L6 myotubes was measured using the non-metabolized glucose analogue 2-deoxy-D-glucose after incubation with glucosamine for 4 and 24 h, with and without insulin and several other agents (metformin, peroxovanadium and D-pinitol) that improve glucose uptake in diabetic states. Results: After 4 h, high concentrations of glucosamine (5 × 10-3 and 10-2 M) reduced basal and insulin-stimulated glucose uptake by up to 50%. After 24 h, the effect of insulin was completely abolished by 10-2 M glucosamine and reduced over 50% by 5 × 10-3 M glucosamine. Lower concentrations of glucosamine did not significantly alter glucose uptake. The effect of glucosamine could not be attributed to cytotoxicity assessed by the Trypan Blue test. Metformin, peroxovanadium and D-pinitol, each of which increased glucose uptake by L6 cells, did not prevent the decrease in glucose uptake with glucosamine. Conclusion: Glucosamine decreased insulin-stimulated glucose uptake by L6 muscle cells, providing a potential model of insulin resistance with similarities to glucose toxicity. Insulin resistance induced by glucosamine was not reversed by three agents (metformin, peroxovanadium and D-pinitol) known to enhance or partially mimic the effects of insulin. © 2004 Blackwell Publishing Ltd.
Resumo:
The presence of chronic inflammation is associated with increased nutrient availability during obesity or type 2 diabetes which contributes to the development of complications such as atherosclerosis, stroke and myocardial infarction. The link between increased nutrient availability and inflammatory response remains poorly understood. The functioning of monocytes, the primary instigators of the inflammatory response was assessed in response to obesity and increased glucose availability. Monocyte microRNA expression was assessed in obese individuals prior to and up to one year after bariatric surgery. A number of microRNAs were identified to be dysregulated in obesity, some of which have previously been linked to the regulation of monocyte inflammatory responses including the microRNAs 146a-5p and 424-5p. Weight loss in response to bariatric surgery lead to the reversal of microRNA changes towards control values. In vitro treatments of THP-1 monocytes with high concentrations of D-glucose resulted in decreased intracellular NAD+:NADH ratio, decreased SIRT1 deacetylase activity and increased P65 acetylation. However the increased osmotic concentration inhibited LPS induced inflammatory response and TNFα mRNA expression. In vitro treatment of primary human monocytes with increased concentrations of D-glucose resulted in increased secretion of a number of inflammatory cytokines and increased expression of TNFα mRNA. Treatment also resulted in decreased intracellular NAD+:NADH ratio and increased binding of acetylated P65 to the TNFα promoter region. In vitro treatments of primary monocytes also replicated the altered expression of the microRNAs 146a-5p and miR-424-5p, as seen in obese individuals. In conclusion a number of changes in monocyte function were observed in response to obesity and treatment with high concentrations of D-glucose. These may lead to the dysregulation of inflammatory responses contributing to the development of co-morbidities.
Resumo:
BACKGROUND: We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Delta, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. RESULTS: cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. CONCLUSION: Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.
Resumo:
C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.
Resumo:
The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.
Resumo:
The telescopic conversion of glucose to fructose and then 5-hydroxymethylfurfural (5-HMF), the latter a potential, bio-derived platform chemical feedstock, has been explored over a family of bifunctional sulfated zirconia catalysts possessing tuneable acid-base properties. Characterisation by acid-base titration, XPS, XRD and Raman reveal that submonolayer SO4 coverages offer the ideal balance of basic and Lewis-Brønsted acid sites required to respectively isomerise glucose to fructose, and subsequently dehydrate fructose to 5-HMF. A constant acid site normalised turnover frequency is observed for fructose dehydration to 5-HMF, confirming a common Brønsted acid site is responsible for this transformation. This journal is © The Royal Society of Chemistry.
Resumo:
Here we describe a simple route to creating conformal sulphated zirconia monolayers throughout an SBA-15 architecture that confers efficient acid-catalysed one-pot conversion of glucose to ethyl levulinate.
Resumo:
The effects of lipoic acid and dihydrolipoic acid were explored on total thiol maintenance in diabetic and non-diabetic human erythrocytes in vitro over 22 hr in a 37°C incubation system with no added glucose. Over 18-22.5 hr after treatment in both non-diabetic and diabetic cells, lipoic acid (1 mM) was associated with greater loss of cellular thiols than dihydrolipoic acid (1 mM), compared to respective control values. At 0.1 mM, in non-diabetic cells, although lipoic acid-treated cells' thiol levels were significantly lower than control, there was no significant difference between dihydrolipoic acid-treated cells and control cells regarding thiol levels. In addition, at 0.1 mM, dihydrolipoic acid-treated diabetic cells showed a reduction in thiol levels compared to control. At 0.01 mM, lipoic acid-treated cells had significantly lower measured thiol levels compared with diabetic cells exposed to dihydrolipoic acid, whereas in non-diabetic cells, dihydrolipoic acid-treated erythrocytic thiol levels were significantly greater than those treated with lipoic acid, although there were no other significant differences between the groups. At 22.5 hr, control values of methaemoglobin rose to 6.4 ± 1.1% in diabetic cells and 3.6 ± 2.1% in non-diabetic cells. Lipoic acid (1 mM) showed greater methaemoglobin formation in diabetic rather than non-diabetic cells (13.6 ± 1.5% versus 11.6 ± 1.5%), whereas dihydrolipoic acid-treated diabetic and non-diabetic cells were less potent in methaemoglobin generation (8.5 ± 2.4% and 8.4 ± 1.4%, respectively). These studies suggest that in certain circumstances such as hypoglycaemia, lipoic acid administration may actually be detrimental to cellular oxidant protection status. © 2006 The Authors.
Resumo:
This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys16PAL) and GIP(Lys37PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(Lys37PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes. © 2006 American Chemical Society.