17 resultados para Cyclin-Dependent Kinase 5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK) inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular-signal-regulated kinase 5 (ERK5), also termed big MAPK1 (BMK1), is the most recently discovered member of the mitogen-activated protein kinase (MAPK) family. It is expressed in a variety of tissues and is activated by a range of growth factors, cytokines and cellular stresses. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade is critical for normal cardiovascular development and vascular integrity. In vitro studies have revealed that, in endothelial cells, ERK5 is required for preventing apoptosis, mediating shear-stress signalling and regulating tumour angiogenesis. The present review focuses on our current understanding of the role of ERK5 in regulating endothelial cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The role of Ca2+ in the activation of PKR (double-stranded-RNA-dependent protein kinase), which leads to skeletal muscle atrophy, has been investigated in murine myotubes using the cell-permeable Ca2+ chelator BAPTA/AM (1,2-bis (o-aminphenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester). BAPTA/AM effectively attenuated both the increase in total protein degradation, through the ubiquitin–proteasome pathway, and the depression of protein synthesis, induced by both proteolysis-inducing factor (PIF) and angiotensin II (Ang  II). Since both protein synthesis and degradation were attenuated this suggests the involvement of PKR. Indeed BAPTA/AM attenuated both the activation  (autophosphorylation) of PKR and the subsequent phosphorylation of eIF2a (eukaryotic initiation factor 2a) in the presence of PIF, suggesting the involvement of Ca2+ in this process. PIF also induced an increase in the activity of both caspases-3 and -8, which was attenuated by BAPTA/AM. The increase in caspase-3 and -8 activity was shown to be responsible for the activation of PKR, since the latter was completely attenuated by the specific caspase-3 and -8 inhibitors. These results suggest that Ca2+ is involved in the increase in protein degradation and decrease in protein synthesis by PIF and Ang II through activation of PKR by caspases-3 and -8.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Inhibition of dsRNA-activated protein kinase (PKR), not only attenuates muscle atrophy in a murine model of cancer cachexia (MAC16), but it also inhibits tumour growth. In vitro the PKR inhibitor maximally inhibited growth of MAC16 tumour cells at a concentration of 200 nM, which was also maximally effective in attenuating phosphorylation of PKR and of eukaryotic initiation factor (eIF)2 on the a-subunit. There was no effect on the growth of the MAC13 tumour, which does not induce cachexia, even at concentrations up to 1,000 nM. There was constitutive phosphorylation of PKR and eIF2a in the MAC16, but not in the MAC13 tumour, while levels of total PKR and eIF2a were similar. There was constitutive upregulation of nuclear factor-?B (NF-?B) in the MAC16 tumour only, and this was attenuated by the PKR inhibitor, suggesting that it arose from activation of PKR. In MAC16 alone the PKR inhibitor also attenuated expression of the 20S proteasome. The PKR inhibitor potentiated the cytotoxicity of both 5-fluorouracil and gemcitabine to MAC16 cells in vitro. These results suggest that inhibitors of PKR may be useful therapeutic agents against tumours showing increased expression of PKR and constitutive activation of NF-?B, and may also prove useful in sensitising tumours to standard chemotherapeutic agents.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF), a tumour-produced cachectic factor, induced a dose-dependent decrease in protein synthesis in murine myotubes, together with an increase in phosphorylation of eucaryotic initiation factor 2 (eIF2) on the alpha-subunit. Both insulin (1 nM) and insulin-like growth factor I (IGF-I) (13.2 nM) attenuated the depression of protein synthesis by PIF and the increased phosphorylation of eIF2alpha, by inhibiting the activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) by induction of protein phosphatase 1. A low-molecular weight inhibitor of PKR also reversed the depression of protein synthesis by PIF to the same extent, as did insulin and IGF-I. Both insulin and IGF-I-stimulated protein synthesis in the presence of PIF, and this was attenuated by Salubrinal, an inhibitor of phospho eIF2alpha phosphatase, suggesting that at least part of this action was due to their ability to inhibit phosphorylation of eIF2alpha. Both insulin and IGF-I also attenuated the induction of protein degradation in myotubes induced by PIF, this effect was also attenuated by Salubrinal. These results suggest an alternative mechanism involving PKR to explain the effect of insulin and IGF-I on protein synthesis and degradation in skeletal muscle in the presence of catabolic factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by a-smooth muscle actin (a-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and a-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both a-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function. © 2013 USCAP, Inc All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The yeast gene fab1 and its mammalian orthologue Pip5k3 encode the phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinases Fab1p and PIKfyve, respectively, enzymes that generates phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)]. A shared feature of fab1Delta yeast cells and mammalian cells overexpressing a kinase-dead PIKfyve mutant is the formation of a swollen vacuolar phenotype: a phenotype that is suggestive of a conserved function for these enzymes and their product, PtdIns(3,5)P(2), in the regulation of endomembrane homeostasis. In the current study, fixed and live cell imaging has established that, when overexpressed at low levels in HeLa cells, PIKfyve is predominantly associated with dynamic tubular and vesicular elements of the early endosomal compartment. Moreover, through the use of small interfering RNA, it has been shown that suppression of PIKfyve induces the formation of swollen endosomal structures that maintain their early and late endosomal identity. Although internalisation, recycling and degradative sorting of receptors for epidermal growth factor and transferrin was unperturbed in PIKfyve suppressed cells, a clear defect in endosome to trans-Golgi-network (TGN) retrograde traffic was observed. These data argue that PIKfyve is predominantly associated with the early endosome, from where it regulates retrograde membrane trafficking to the TGN. It follows that the swollen endosomal phenotype observed in PIKfyve-suppressed cells results primarily from a reduction in retrograde membrane fission rather than a defect in multivesicular body biogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .