20 resultados para Clinical Research Coordinator
Resumo:
This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.
Resumo:
Implementation of the Department of Health Research Governance Framework (RGF) in the United Kingdom has major implications for the conduct of pharmacy practice undergraduate research projects. This paper draws upon a survey of local ethics research committees (LRECs) in the greater Birmingham area to identify the issues that arise from the RGF in relation to non-clinical practice research in community pharmacy. Although there is some evidence of minor differences between LRECs, the overwhelming finding is that projects will be subject to the full force of the RGF. The implications are discussed in relation to specific issues relating to non-clinical research, the professional aspirations for a research capable workforce, and the expertise within pharmacy to meet the current accreditation requirements for undergraduate projects.
Resumo:
The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient’s visual function.
Resumo:
Background: Age-related macular degeneration (ARMD) is the leading cause of visual disability in people over 60 years of age in the developed world. The success of treatment deteriorates with increased latency of diagnosis. The purpose of this study was to determine the reliability of the macular mapping test (MMT), and to investigate its potential as a screening tool. Methods: The study population comprised of 31 healthy eyes of 31 participants. To assess reliability, four macular mapping test (MMT) measurements were taken in two sessions separated by one hour by two practitioners, with reversal of order in the second session. MMT readings were also taken from 17 age-related maculopathy (ARM), and 12 AMD affected eyes. Results: For the normal cohort, average MMT scores ranged from 85.5 to 100.0 MMT points. Scores ranged from 79.0 to 99.0 for the ARM group and from 9.0 to 92.0 for the AMD group. MMT scores were reliable to within ± 7.0 points. The difference between AMD affected eyes and controls (z = 3.761, p = < 0.001) was significant. The difference between ARM affected eyes and controls was not significant (z = -0.216, p = 0.829). Conclusion: The reliability data shows that a change of 14 points or more is required to indicate a clinically significant change. This value is required for use of the MMT as an outcome measure in clinical trials. Although there was no difference between MMT scores from ARM affected eyes and controls, the MMT has the advantage over the Amsler grid in that it uses a letter target, has a peripheral fixation aid, and it provides a numerical score. This score could be beneficial in office and home monitoring of AMD progression, as well as an outcome measure in clinical research. © 2005 Bartlett et al; licensee BioMed Central Ltd.
Resumo:
Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD–TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP ‘continuum’ overlapping with FTLD-TDP disease subtypes 2 and 3.
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e.g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA. © 2009 Bentham Science Publishers Ltd.
Resumo:
Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.
Resumo:
Background: 'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience.Discussion: In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research.Summary: We identify the following areas where consumer neuroscience could contribute to the field of neurology:. First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks empirical behavioral and neuroscientific evidence. Neurologists entering this field of research could profit from the extensive knowledge of the biological foundation of trust that scientists in economically-orientated neurosciences have gained.Fourth, neurologists could contribute significantly to the ethical debate about invasive methods in neuromarketing and consumer neuroscience. Further, neurologists should investigate biological and behavioral reactions of neurological patients to marketing and advertising measures, as they could show special consumer vulnerability and be subject to target marketing. © 2013 Javor et al.; licensee BioMed Central Ltd.
Resumo:
A large number of possible risk factors have been associated with Alzheimer'sdisease (AD).This chapter discusses the validity of the major risk factors that have been identifiedincluding age, genetics, exposure to aluminum, head injury, malnutrition and diet,mitochondrial dysfunction, vascular disease, immune system dysfunction, and infectionand proposes a hypothesis to explain how these various risk factors may cause ADpathology.Rare forms of early-onset familial AD (FAD) are strongly linked to the presence ofspecific gene mutations, viz. mutations in amyloid precursor protein (APP) andpresenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (SAD) is amultifactorial disorder in which age-related changes, genetic risk factors, such as allelicvariation in apolipoprotein E (Apo E) gene, vascular disease, head injury and risk factorsassociated with diet, immune system, mitochondrial function, and infection may all beinvolved.These risk factors interact to increase the rate of normal aging (=allostatic load')which over a lifetime results in degeneration of neurons and blood vessels and as aconsequence, the formation of abnormally aggregated =reactive' proteins such as ß-amyloid (Aß) and tau leading to the development of senile plaques (SP) andneurofibrillary tangles (NFT) respectively. Life-style changes that may reduce theallostatic load and therefore, the risk of dementia are discussed.
Resumo:
The Diabetic Retinopathy Clinical Research Network has published the 2-year results of a 5-year study comparing intravitreous ranibizumab with panretinal laser photocoagulation in patients with proliferative diabetic retinopathy. The results suggest that intravitreous ranibizumab will become a valuable treatment option, although its exact role remains to be defined.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.