29 resultados para Brain Connectivity Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral and coherence methodologies are ubiquitous for the analysis of multiple time series. Partial coherence analysis may be used to try to determine graphical models for brain functional connectivity. The outcome of such an analysis may be considerably influenced by factors such as the degree of spectral smoothing, line and interference removal, matrix inversion stabilization and the suppression of effects caused by side-lobe leakage, the combination of results from different epochs and people, and multiple hypothesis testing. This paper examines each of these steps in turn and provides a possible path which produces relatively ‘clean’ connectivity plots. In particular we show how spectral matrix diagonal up-weighting can simultaneously stabilize spectral matrix inversion and reduce effects caused by side-lobe leakage, and use the stepdown multiple hypothesis test procedure to help formulate an interaction strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If, as is widely believed, schizophrenia is characterized by abnormalities of brain functional connectivity, then it seems reasonable to expect that different subtypes of schizophrenia could be discriminated in the same way. However, evidence for differences in functional connectivity between the subtypes of schizophrenia is largely lacking and, where it exists, it could be accounted for by clinical differences between the patients (e.g. medication) or by the limitations of the measures used. In this study, we measured EEG functional connectivity in unmedicated male patients diagnosed with either positive or negative syndrome schizophrenia and compared them with age and sex matched healthy controls. Using new methodology (Medkour et al., 2009) based on partial coherence, brain connectivity plots were constructed for positive and negative syndrome patients and controls. Reliable differences in the pattern of functional connectivity were found with both syndromes showing not only an absence of some of the connections that were seen in controls but also the presence of connections that the controls did not show. Comparing connectivity graphs using the Hamming distance, the negative-syndrome patients were found to be more distant from the controls than were the positive syndrome patients. Bootstrap distributions of these distances were created which showed a significant difference in the mean distances that was consistent with the observation that negative-syndrome diagnosis is associated with a more severe form of schizophrenia. We conclude that schizophrenia is characterized by widespread changes in functional connectivity with negative syndrome patients showing a more extreme pattern of abnormality than positive syndrome patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider how functional Magnetic Resonance Imaging (fMRI) has been used to study cortical connectivity in autism and autistic spectrum disorders (ASD). We discuss those studies that have contributed to the evidence supporting a model of disordered cortical connectivity in autism and (ASD), with a focusing emphasis on the application to research into the underconnectivity model. We note that the analytical techniques employed are limited and do not allow interpretation in terms of effective, or directional connectivity, nor do they provide information about the temporal or spectral characteristics of the functional networks being studied. We highlight how currently the features of neural generators that are being assessed by functional connectivity in fMRI are unclear. In addition, we note the importance in clinical studies of considering the consequences of task choice for the nature of the imaging data that can be collected and also of individual differences in participant state and trait characteristics for the accurate interpretation of imaging data. We discuss how alternative techniques such as EEG/MEG may address the limitations of fMRI in assessing brain connectivity, and additionally consider the potential of multimodal approaches. We conclude that fMRI has made significant contributions towards our understanding of the brain in terms of neural systems but that the conclusions drawn from its application in the sphere of autism research need to be approached with caution. It is important in research of this kind that we are aware of the need to examine the methodological and analytical techniques closely when applying findings in clinical populations, not only when they are used to support the development of theoretical models but also to inform diagnostic or treatment decisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz) alpha (8-12.9 Hz), beta1 (13-19.9 Hz), beta2 (20-29.9 Hz) and gamma (30-45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized "hypnotic-state". © 2014 Jamieson and Burgess.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although atypical social behaviour remains a key characterisation of ASD, the presence ofsensory and perceptual abnormalities has been given a more central role in recentclassification changes. An understanding of the origins of such aberrations could thus prove afruitful focus for ASD research. Early neurocognitive models of ASD suggested that thestudy of high frequency activity in the brain as a measure of cortical connectivity mightprovide the key to understanding the neural correlates of sensory and perceptual deviations inASD. As our review shows, the findings from subsequent research have been inconsistent,with a lack of agreement about the nature of any high frequency disturbances in ASD brains.Based on the application of new techniques using more sophisticated measures of brainsynchronisation, direction of information flow, and invoking the coupling between high andlow frequency bands, we propose a framework which could reconcile apparently conflictingfindings in this area and would be consistent both with emerging neurocognitive models ofautism and with the heterogeneity of the condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the equilibrium states of energy functions involving a large set of real variables, defined on the links of sparsely connected networks, and interacting at the network nodes, using the cavity and replica methods. When applied to the representative problem of network resource allocation, an efficient distributed algorithm is devised, with simulations showing full agreement with theory. Scaling properties with the network connectivity and the resource availability are found. © 2006 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In accordance with its central role in basal ganglia circuitry, changes in the rate of action potential firing and pattern of activity in the globus pallidus (GP)-subthalamic nucleus (STN) network are apparent in movement disorders. In this study we have developed a mouse brain slice preparation that maintains the functional connectivity between the GP and STN in order to assess its role in shaping and modulating bursting activity promoted by pharmacological manipulations. Fibre-tract tracing studies indicated that a parasagittal slice cut 20 deg to the midline best preserved connectivity between the GP and the STN. IPSCs and EPSCs elicited by electrical stimulation confirmed connectivity from GP to STN in 44/59 slices and from STN to GP in 22/33 slices, respectively. In control slices, 74/76 (97%) of STN cells fired tonically at a rate of 10.3 ± 1.3 Hz. This rate and pattern of single spiking activity was unaffected by bath application of the GABAA antagonist picrotoxin (50 μM, n = 9) or the glutamate receptor antagonist (6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) 10 μM, n = 8). Bursting activity in STN neurones could be induced pharmacologically by application of NMDA alone (20 μM, 3/18 cells, 17%) but was more robust if NMDA was applied in conjunction with apamin (20-100 nM, 34/77 cells, 44%). Once again, neither picrotoxin (50 μM, n = 5) nor CNQX (10 μM, n = 5) had any effect on the frequency or pattern of the STN neurone activity while paired STN and GP recordings of tonic and bursting activity show no evidence of coherent activity. Thus, in a mouse brain slice preparation where functional GP-STN connectivity is preserved, no regenerative synaptically mediated activity indicative of a dynamic network is evident, either in the resting state or when neuronal bursting in both the GP and STN is generated by application of NMDA/apamin. This difference from the brain in Parkinson's disease may be attributed either to insufficient preservation of cortico-striato-pallidal or cortico-subthalamic circuitry, and/or an essential requirement for adaptive changes resulting from dopamine depletion for the expression of network activity within this tissue complex. © The Physiological Society 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of researchers have investigated the application of neural networks to visual recognition, with much of the emphasis placed on exploiting the network's ability to generalise. However, despite the benefits of such an approach it is not at all obvious how networks can be developed which are capable of recognising objects subject to changes in rotation, translation and viewpoint. In this study, we suggest that a possible solution to this problem can be found by studying aspects of visual psychology and in particular, perceptual organisation. For example, it appears that grouping together lines based upon perceptually significant features can facilitate viewpoint independent recognition. The work presented here identifies simple grouping measures based on parallelism and connectivity and shows how it is possible to train multi-layer perceptrons (MLPs) to detect and determine the perceptual significance of any group presented. In this way, it is shown how MLPs which are trained via backpropagation to perform individual grouping tasks, can be brought together into a novel, large scale network capable of determining the perceptual significance of the whole input pattern. Finally the applicability of such significance values for recognition is investigated and results indicate that both the NILP and the Kohonen Feature Map can be trained to recognise simple shapes described in terms of perceptual significances. This study has also provided an opportunity to investigate aspects of the backpropagation algorithm, particularly the ability to generalise. In this study we report the results of various generalisation tests. In applying the backpropagation algorithm to certain problems, we found that there was a deficiency in performance with the standard learning algorithm. An improvement in performance could however, be obtained when suitable modifications were made to the algorithm. The modifications and consequent results are reported here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bandswere analyzed in pre-selected time windows of 350-550 and 500-700ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700ms for the phonological task and 350-550ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550ms for the phonological task and 500-700ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. © 2012 McNab, Hillebrand, Swithenby and Rippon.