31 resultados para Biomedical databases
Resumo:
Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.
Resumo:
When object databases arrived on the scene some ten years ago, they provided database capabilities for previously neglected, complex applications, such as CAD, but were burdened with one inherent teething problem, poor performance. Physical database design is one tool that can provide performance improvements and it is the general area of concern for this thesis. Clustering is one fruitful design technique which can provide improvements in performance. However, clustering in object databases has not been explored in depth and so has not been truly exploited. Further, clustering, although a physical concern, can be determined from the logical model. The object model is richer than previous models, notably the relational model, and so it is anticipated that the opportunities with respect to clustering are greater. This thesis provides a thorough analysis of object clustering strategies with a view to highlighting any links between the object logical and physical model and improving performance. This is achieved by considering all possible types of object logical model construct and the implementation of those constructs in terms of theoretical clusterings strategies to produce actual clustering arrangements. This analysis results in a greater understanding of object clustering strategies, aiding designers in the development process and providing some valuable rules of thumb to support the design process.
Resumo:
Aromatic and aliphatic diacid chlorides were used to condense naturally occurring diamino acids and their esterified derivatives. It was anticipated the resulting functional polyamides would biodegrade to physiologically acceptable compounds and show pH dependant solubility could be used for biomedical applications ranging from enteric coatings to hydrosoluble drug delivery vehicles capable of targeting areas of low physiological pH. With these applications in mind the polymers were characterised by infra red spectroscopy, gel permeation chromatography and in the case of aqueous soluble polymers by potentiometric titration. Thin films of poly (lysine ethyl ester isophthalamide) plasticised with poly (caprolactone) were cast from DMSO/chloroform solutions and their mechanical properties measured on a Hounsfield Hti tensiometer. Interfacial synthesis was investigated as a synthetic route for the production of linear functional polyamides. High molecular weight polymer was obtained only when esterified diamino acids were condensed with aromatic diacid chlorides. The method was unsuitable for the production of copolymers of free and esterified amino acids with a diacid chloride. A novel miscible mixed solvent single phase reaction was investigated for production of copolymers of esterified and non-esterified amino acids with diacid chlorides. Aliphatic diacid chlorides were unsuitable for condensing diamino acids using this technique because of high rates of hydrolysis. The technique gave high molecular weight homopolymers from esterified diamino acids and aromatic diacid chlorides.
Resumo:
This research was conducted at the Space Research and Technology Centre o the European Space Agency at Noordvijk in the Netherlands. ESA is an international organisation that brings together a range of scientists, engineers and managers from 14 European member states. The motivation for the work was to enable decision-makers, in a culturally and technologically diverse organisation, to share information for the purpose of making decisions that are well informed about the risk-related aspects of the situations they seek to address. The research examined the use of decision support system DSS) technology to facilitate decision-making of this type. This involved identifying the technology available and its application to risk management. Decision-making is a complex activity that does not lend itself to exact measurement or precise understanding at a detailed level. In view of this, a prototype DSS was developed through which to understand the practical issues to be accommodated and to evaluate alternative approaches to supporting decision-making of this type. The problem of measuring the effect upon the quality of decisions has been approached through expert evaluation of the software developed. The practical orientation of this work was informed by a review of the relevant literature in decision-making, risk management, decision support and information technology. Communication and information technology unite the major the,es of this work. This allows correlation of the interests of the research with European public policy. The principles of communication were also considered in the topic of information visualisation - this emerging technology exploits flexible modes of human computer interaction (HCI) to improve the cognition of complex data. Risk management is itself an area characterised by complexity and risk visualisation is advocated for application in this field of endeavour. The thesis provides recommendations for future work in the fields of decision=making, DSS technology and risk management.
Resumo:
Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.
Resumo:
This thesis addresses the problem of information hiding in low dimensional digital data focussing on issues of privacy and security in Electronic Patient Health Records (EPHRs). The thesis proposes a new security protocol based on data hiding techniques for EPHRs. This thesis contends that embedding of sensitive patient information inside the EPHR is the most appropriate solution currently available to resolve the issues of security in EPHRs. Watermarking techniques are applied to one-dimensional time series data such as the electroencephalogram (EEG) to show that they add a level of confidence (in terms of privacy and security) in an individual’s diverse bio-profile (the digital fingerprint of an individual’s medical history), ensure belief that the data being analysed does indeed belong to the correct person, and also that it is not being accessed by unauthorised personnel. Embedding information inside single channel biomedical time series data is more difficult than the standard application for images due to the reduced redundancy. A data hiding approach which has an in built capability to protect against illegal data snooping is developed. The capability of this secure method is enhanced by embedding not just a single message but multiple messages into an example one-dimensional EEG signal. Embedding multiple messages of similar characteristics, for example identities of clinicians accessing the medical record helps in creating a log of access while embedding multiple messages of dissimilar characteristics into an EPHR enhances confidence in the use of the EPHR. The novel method of embedding multiple messages of both similar and dissimilar characteristics into a single channel EEG demonstrated in this thesis shows how this embedding of data boosts the implementation and use of the EPHR securely.
Resumo:
The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.
Resumo:
Polyzwitterionic-containing hydrogel materials been proposed for use in biomaterial applications. Polyzwitterions contain anions and cations in the same monomeric unit, unlike polyampholytes which contain them in different monomeric units. The use of cationic and anionic monomers in stoichiometrically equivalent proportions produces charge-balanced polyampholytes (PA) copolymers. Membranes prepared using either betaine-containing (BT) polyzwitterionic copolymers or PA copolymers can share similar properties, but the range of EWCs offered by membranes incorporating BT and PA monomers is greater than that for conventional neutral hydrogels and methacrylic acid-based systems. Here we compare properties of BT-containing and PA-containing copolymer membranes, relevant to their potential as biomedical materials. Membranes of the copolymers were prepared as previously described. Surface energy was determined using a GBX Digidrop (GBX Scientific Instruments), with diidomethane and water as probes. The absorption of proteins was determined by soaking the membranes in 1mg/ml protein solutions for a predetermined time, and measuring UV absorption of the membranes at certain wavelengths. The BT and PA copolymer membranes displayed similar values for the polar components and dispersive components of total surface free energy. This was perhaps not surprising when the structures of the monomers were considered. The BT and PA copolymer membranes displayed differences in their protein absorption over time, with the PA demonstrating higher uptake of protein than the BT. In addition to the aforementioned greater EWC range, the use of BT and PA copolymer membranes also avoids some of the problems associated with net anionicity. Comparison of the BT copolymer with the “pseudo” zwitterionic PA copolymers shows that controlled molecular architecture is required to gain the benefits of balancing the charges present in the copolymers in a way that will make them beneficial to hydrogel design.
Resumo:
Objective: Biomedical events extraction concerns about events describing changes on the state of bio-molecules from literature. Comparing to the protein-protein interactions (PPIs) extraction task which often only involves the extraction of binary relations between two proteins, biomedical events extraction is much harder since it needs to deal with complex events consisting of embedded or hierarchical relations among proteins, events, and their textual triggers. In this paper, we propose an information extraction system based on the hidden vector state (HVS) model, called HVS-BioEvent, for biomedical events extraction, and investigate its capability in extracting complex events. Methods and material: HVS has been previously employed for extracting PPIs. In HVS-BioEvent, we propose an automated way to generate abstract annotations for HVS training and further propose novel machine learning approaches for event trigger words identification, and for biomedical events extraction from the HVS parse results. Results: Our proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP'09 shared task, which is only 2.38% lower than the best performing system by UTurku in the BioNLP'09 shared task. Nevertheless, HVS-BioEvent outperforms UTurku's system on complex events extraction with 36.57% vs. 30.52% being achieved for extracting regulation events, and 40.61% vs. 38.99% for negative regulation events. Conclusions: The results suggest that the HVS model with the hierarchical hidden state structure is indeed more suitable for complex event extraction since it could naturally model embedded structural context in sentences.
Resumo:
To date, more than 16 million citations of published articles in biomedical domain are available in the MEDLINE database. These articles describe the new discoveries which accompany a tremendous development in biomedicine during the last decade. It is crucial for biomedical researchers to retrieve and mine some specific knowledge from the huge quantity of published articles with high efficiency. Researchers have been engaged in the development of text mining tools to find knowledge such as protein-protein interactions, which are most relevant and useful for specific analysis tasks. This chapter provides a road map to the various information extraction methods in biomedical domain, such as protein name recognition and discovery of protein-protein interactions. Disciplines involved in analyzing and processing unstructured-text are summarized. Current work in biomedical information extracting is categorized. Challenges in the field are also presented and possible solutions are discussed.