147 resultados para Admiraçión Operum Dey
Resumo:
Purpose – The purpose of this paper is to measure the performance of commercial virtual learning environment (VLE) systems, which helps the decision makers to select the appropriate system for their institutions. Design/methodology/approach – This paper develops an integrated multiple criteria decision making approach, which combines the analytic hierarchy process (AHP) and quality function deployment (QFD), to evaluate and select the best system. The evaluating criteria are derived from the requirements of those who use the system. A case study is provided to demonstrate how the integrated approach works. Findings – The major advantage of the integrated approach is that the evaluating criteria are of interest to the stakeholders. This ensures that the selected system will achieve the requirements and satisfy the stakeholders most. Another advantage is that the approach can guarantee the benchmarking to be consistent and reliable. From the case study, it is proved that the performance of a VLE system being used at the university is the best. Therefore, the university should continue to run the system in order to support and facilitate both teaching and learning. Originality/value – It is believed that there is no study that measures the performance of VLE systems, and thus decision makers may have difficulties in system evaluation and selection for their institutions.
Resumo:
Purpose – The purpose of the paper is to develop an integrated framework for performance management of healthcare services. Design/methodology/approach – This study develops a performance management framework for healthcare services using a combined analytic hierarchy process (AHP) and logical framework (LOGFRAME). The framework is then applied to the intensive care units of three different hospitals in developing nations. Numerous focus group discussions were undertaken, involving experts from the specific area under investigation. Findings – The study reveals that a combination of outcome, structure and process-based critical success factors and a combined AHP and LOGFRAME-based performance management framework helps manage performance of healthcare services. Practical implications – The proposed framework could be practiced in hospital-based healthcare services. Originality/value – The conventional approaches to healthcare performance management are either outcome-based or process-based, which cannot reveal improvement measures appropriately in order to assure superior performance. Additionally, they lack planning, implementing and evaluating improvement projects that are identified from performance measurement. This study presents an integrated approach to performance measurement and implementing framework of improvement projects.
Resumo:
Improving healthcare quality is a growing need of any society. Although various quality improvement projects are routinely deployed by the healthcare professional, they are characterised by a fragmented approach, i.e. they are not linked with the strategic intent of the organisation. This study introduces a framework which integrates all quality improvement projects with the strategic intent of the organisation. It first derives the strengths, weaknesses, opportunities and threats (SWOT) matrix of the system with the involvement of the concerned stakeholders (clinical professional), which helps identify a few projects, the implementation of which ensures achievement of desired quality. The projects are then prioritised using the analytic hierarchy process with the involvement of the concerned stakeholders (clinical professionals) and implemented in order to improve system performance. The effectiveness of the method has been demonstrated using a case study in the intensive care unit of Queen Elizabeth Hospital in Bridgetown, Barbados.
Resumo:
There are several studies on managing risks in information technology (IT) projects. Most of the studies identify and prioritise risks through empirical research in order to suggest mitigating measures. Although they are important to clients for future projects, these studies fail to provide any framework for risk management from IT developers' perspective. Although a few studies introduced a framework of risk management in IT projects, most of them are presented from clients' perspectives and very little effort has been made to integrate this with the project management cycle. As IT developers absorb a considerable amount of risk, an integrated framework for managing risks in IT projects from developers' perspective is needed in order to ensure success in IT projects. The main objective of the paper is to develop a risk management framework for IT projects from the developers' perspective. This study uses a combined qualitative and quantitative technique with the active involvement of stakeholders in order to identify, analyse and respond to risks. The entire methodology has been explained using a case study on an information technology project in a public sector organisation in Barbados.
Resumo:
Several parties (stakeholders) are involved in a construction project. The conventional Risk Management Process (RMP) manages risks from a single party perspective, which does not give adequate consideration to the needs of others. The objective of multi-party risk management is to assist decision-makers in managing risk systematically and most efficiently in a multi-party environment. Multi-party Risk Management Processes (MRMP) consist of risk identification, structuring, analysis and developing responses from all party perspectives. The MRMP has been applied to a cement plant construction project in Thailand to demonstrate its effectiveness.
Resumo:
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.
Resumo:
Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.
Resumo:
The materials management function is always a major concern to the management of any organisation as high inventory and inefficient procurement processes have a significant effect on profitability. The problems multiply in the face of a very dynamic business environment, as is the present case in India. Hence, the existing system of materials planning, procurement processes and inventory management require reviewing with respect to the changed business environment. This study shows a radical improvement in materials procurement function of an Indian petroleum refinery through Business Process Reengineering (BPR) by analysing current process, identifying key issues, deriving paradigm shifts and developing reengineered processes through customer value analysis. BPR has been carried out on existing processes of 'material planning and procurement' and 'warehousing and surplus disposal'. The reengineered processes for the materials management function triggered several improvement projects that were identified by the group of executives who took part in the reengineering exercise. Those projects were implemented in an integrated framework, with the application of state of the art information technology tools and building partnership alliance among all stakeholders. Considerable improvements in overall functions of the organisation are observed, along with financial benefits. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
Conventionally, oil pipeline projects are evaluated thoroughly by the owner before investment decision is made using market, technical and financial analysis sequentially. The market analysis determines pipelines throughput and supply and demand points. Subsequent, technical analysis identifies technological options and economic and financial analysis then derives the least cost option among all technically feasible options. The subsequent impact assessment tries to justify the selected option by addressing environmental and social issues. The impact assessment often suggests alternative sites, technologies, and/or implementation methodology, necessitating revision of technical and financial analysis. This study addresses these issues via an integrated project evaluation and selection model. The model uses analytic hierarchy process, a multiple-attribute decision-making technique. The effectiveness of the model has been demonstrated through a case application on cross-country petroleum pipeline project in India.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to investigate the reasons of social impacts of projects in developing countries despite of thorough impact assessment in appraisal phase of projects. A case study approach on a sewerage project in Barbados was undertaken using primary and secondary information. The study reveals that although the impact assessment report suggested appropriate mitigation measures, but they were not implemented by the contractors. The study suggests fostering an interconnected and symbiotic relationship between appraisal and implementation phases of a project in order to manage project environment. Additionally, a more vigilant and proactive supervisory role should be instituted and strengthened over time and adapted within the dictates of environmental needs. Copyright © 2005 Inderscience Enterprises Ltd.
Resumo:
Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
Resumo:
Innovation is part and parcel of any service in today's environment, so as to remain competitive. Quality improvement in healthcare services is a complex, multi-dimensional task. This study proposes innovation management in healthcare services using a logical framework. A problem tree and an objective tree are developed to identify and mitigate issues and concerns. A logical framework is formulated to develop a plan for implementation and monitoring strategies, potentially creating an environment for continuous quality improvement in a specific unit. We recommend logical framework as a valuable model for innovation management in healthcare services. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
The Intensive Care Unit (ICU) being one of those vital areas of a hospital providing clinical care, the quality of service rendered must be monitored and measured quantitatively. It is, therefore, essential to know the performance of an ICU, in order to identify any deficits and enable the service providers to improve the quality of service. Although there have been many attempts to do this with the help of illness severity scoring systems, the relative lack of success using these methods has led to the search for a form of measurement, which would encompass all the different aspects of an ICU in a holistic manner. The Analytic Hierarchy Process (AHP), a multiple-attribute, decision-making technique is utilised in this study to evolve a system to measure the performance of ICU services reliably. This tool has been applied to a surgical ICU in Barbados; we recommend AHP as a valuable tool to quantify the performance of an ICU. Copyright © 2004 Inderscience Enterprises Ltd.