21 resultados para Ad hoc network
Resumo:
The environment of a mobile ad hoc network may vary greatly depending on nodes' mobility, traffic load and resource conditions. In this paper we categorize the environment of an ad hoc network into three main states: an ideal state, wherein the network is relatively stable with sufficient resources; a congested state, wherein some nodes, regions or the network is experiencing congestion; and an energy critical state, wherein the energy capacity of nodes in the network is critically low. Each of these states requires unique routing schemes, but existing ad hoc routing protocols are only effective in one of these states. This implies that when the network enters into any other states, these protocols run into a sub optimal mode, degrading the performance of the network. We propose an Ad hoc Network State Aware Routing Protocol (ANSAR) which conditionally switches between earliest arrival scheme and a joint Load-Energy aware scheme depending on the current state of the network. Comparing to existing schemes, it yields higher efficiency and reliability as shown in our simulation results. © 2007 IEEE.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the capacity improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). While it can be shown that there is a capacity gain by PNC, we can prove that the per session throughput capacity with PNC is ? (nR(n))), where n is the total number of nodes, R(n) is the communication range, and each multicast session consists of a constant number of sinks. The result implies that PNC cannot improve the capacity order of multicast in random WAHNs, which is different from the intuition that PNC may improve the capacity order as it allows simultaneous signal reception and combination. Copyright © 2010 ACM.
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
In this paper, we investigate the hop distance optimization problem in ad hoc networks where cooperative multiinput- single-output (MISO) is adopted to improve the energy efficiency of the network. We first establish the energy model of multihop cooperative MISO transmission. Based on the model, the energy consumption per bit of the network with high node density is minimized numerically by finding an optimal hop distance, and, to get the global minimum energy consumption, both hop distance and the number of cooperating nodes around each relay node for multihop transmission are jointly optimized. We also compare the performance between multihop cooperative MISO transmission and single-input-single-output (SISO) transmission, under the same network condition (high node density). We show that cooperative MISO transmission could be energyinefficient compared with SISO transmission when the path-loss exponent becomes high. We then extend our investigation to the networks with varied node densities and show the effectiveness of the joint optimization method in this scenario using simulation results. It is shown that the optimal results depend on network conditions such as node density and path-loss exponent, and the simulation results are closely matched to those obtained using the numerical models for high node density cases.
Resumo:
The multiple-input multiple-output (MIMO) technique can be used to improve the performance of ad hoc networks. Various medium access control (MAC) protocols with multiple contention slots have been proposed to exploit spatial multiplexing for increasing the transport throughput of MIMO ad hoc networks. However, the existence of multiple request-to-send/clear-to-send (RTS/CTS) contention slots represents a severe overhead that limits the improvement on transport throughput achieved by spatial multiplexing. In addition, when the number of contention slots is fixed, the efficiency of RTS/CTS contention is affected by the transmitting power of network nodes. In this study, a joint optimisation scheme on both transmitting power and contention slots number for maximising the transport throughput is presented. This includes the establishment of an analytical model of a simplified MAC protocol with multiple contention slots, the derivation of transport throughput as a function of both transmitting power and the number of contention slots, and the optimisation process based on the transport throughput formula derived. The analytical results obtained, verified by simulation, show that much higher transport throughput can be achieved using the joint optimisation scheme proposed, compared with the non-optimised cases and the results previously reported.
Resumo:
IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.
Resumo:
IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.
Resumo:
Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.
Resumo:
Cellular networks have been widely used to support many new audio-and video-based multimedia applications. The demand for higher data rate and diverse services has driven the research on multihop cellular networks (MCNs). With its ad hoc network features, an MCN can offer many additional advantages, such as increased network throughput, scalability and coverage. However, providing ad hoc capability to MCNs is challenging as it may require proper wireless interfaces. In this article, the architecture of IEEE 802.16 network interface to provide ad hoc capability for MCNs is investigated, with its focus on the IEEE 802.16 mesh networking and scheduling. Several distributed routing algorithms based on network entry mechanism are studied and compared with a centralized routing algorithm. It is observed from the simulation results that 802.16 mesh networks have limitations on providing sufficient bandwidth for the traffic from the cellular base stations when a cellular network size is relatively large. © 2007 IEEE.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.
Resumo:
Due to the dynamic and mutihop nature of the Mobile Ad-hoc Network (MANET), voice communication over MANET may encounter many challenges. We set up a subjective quality evaluation model using ITU-T E-model with extension. And through simulation in NS-2, we evaluate how the following factors impact voice quality in MANET: the number of hops, the number of route breakages, the number of communication pairs and the background traffic. Using AODV as the underlying routing protocol, and with the MAC layer changed from 802.11 DCF to 802.11e EDCF, we observe that 802.11e is more suitable for implementating voice communication over MANET. © 2005 IEEE.
Resumo:
During medical emergencies, the ability to communicate the state and position of injured individuals is essential. In critical situations or crowd aggregations, this may result difficult or even impossible due to the inaccuracy of verbal communication, the lack of precise localization for the medical events, and/or the failure/congestion of infrastructure-based communication networks. In such a scenario, a temporary (ad hoc) wireless network for disseminating medical alarms to the closest hospital, or medical field personnel, can be usefully employed to overcome the mentioned limitations. This is particularly true if the ad hoc network relies on the mobile phones that people normally carry, since they are automatically distributed where the communication needs are. Nevertheless, the feasibility and possible implications of such a network for medical alarm dissemination need to be analysed. To this aim, this paper presents a study on the feasibility of medical alarm dissemination through mobile phones in an urban environment, based on realistic people mobility. The results showed the dependence between the medical alarm delivery rates and both people and hospitals density. With reference to the considered urban scenario, the time needed to delivery medical alarms to the neighbour hospital with high reliability is in the order of minutes, thus revealing the practicability of the reported network for medical alarm dissemination. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation.