1 resultado para sales forecasting
em Academic Research Repository at Institute of Developing Economies
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Archive of European Integration (39)
- Aston University Research Archive (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (9)
- Bibloteca do Senado Federal do Brasil (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (5)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (148)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (6)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (85)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (30)
- Harvard University (14)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (23)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório digital da Fundação Getúlio Vargas - FGV (27)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad Autónoma de Nuevo León, Mexico (11)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (19)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (10)
- Université de Montréal, Canada (8)
- University of Connecticut - USA (3)
- University of Michigan (181)
- University of Queensland eSpace - Australia (31)
- University of Southampton, United Kingdom (1)
Resumo:
Forecasting tourism demand is crucial for management decisions in the tourism sector. Estimating a vector autoregressive (VAR) model for monthly visitor arrivals disaggregated by three entry points in Cambodia for the years 2006–2015, I forecast the number of arrivals for years 2016 and 2017. The results show that the VAR model fits well with the data on visitor arrivals for each entry point. Ex post forecasting shows that the forecasts closely match the observed data for visitor arrivals, thereby supporting the forecasting accuracy of the VAR model. Visitor arrivals to Siem Reap and Phnom Penh airports are forecast to increase steadily in future periods, with varying fluctuations across months and origin countries of foreign tourists.