6 resultados para Spatial data
em Academic Research Repository at Institute of Developing Economies
Resumo:
Spatial data are being increasingly used in a wide range of disciplines, a fact that is clearly reflected in the recent trend to add spatial dimensions to the conventional social sciences. Economics is by no means an exception. On one hand, spatial data are indispensable to many branches of economics such as economic geography, new economic geography, or spatial economics. On the other hand, macroeconomic data are becoming available at more and more micro levels, so that academics and analysts take it for granted that they are available not only for an entire country, but also for more detailed levels (e.g. state, province, and even city). The term ‘spatial economics data’ as used in this report refers to any economic data that has spatial information attached. This spatial information can be the coordinates of a location at best or a less precise place name as is used to describe administrative units. Obviously, the latter cannot be used without a map of corresponding administrative units. Maps are therefore indispensible to the analysis of spatial economic data without absolute coordinates. The aim of this report is to review the availability of spatial economic data that pertains specifically to Laos and academic studies conducted on such data up to the present. In regards to the availability of spatial economic data, efforts have been made to identify not only data that has been made available as geographic information systems (GIS) data, but also those with sufficient place labels attached. The rest of the report is organized as follows. Section 2 reviews the maps available for Laos, both in hard copy and editable electronic formats. Section 3 summarizes the spatial economic data available for Laos at the present time, and Section 4 reviews and categorizes the many economic studies utilizing these spatial data. Section 5 give examples of some of the spatial industrial data collected for this research. Section 6 provides a summary of the findings and gives some indication of the direction of the final report due for completion in fiscal 2010.
Resumo:
Measures have been developed to understand tendencies in the distribution of economic activity. The merits of these measures are in the convenience of data collection and processing. In this interim report, investigating the property of such measures to determine the geographical spread of economic activities, we summarize the merits and limitations of measures, and make clear that we must apply caution in their usage. As a first trial to access areal data, this project focus on administrative areas, not on point data and input-output data. Firm level data is not within the scope of this article. The rest of this article is organized as follows. In Section 2, we touch on the the limitations and problems associated with the measures and areal data. Specific measures are introduced in Section 3, and applied in Section 4. The conclusion summarizes the findings and discusses future work.
Resumo:
This paper estimates the elasticity of labor productivity with respect to employment density, a widely used measure of the agglomeration effect, in the Yangtze River Delta, China. A spatial Durbin model is presented that makes explicit the influences of spatial dependence and endogeneity bias in a very simple way. Results of Bayesian estimation using the data of the year 2009 indicate that the productivity is influenced by factors correlated with density rather than density itself and that spatial spillovers of these factors of agglomeration play a significant role. They are consistent with the findings of Ke (2010) and Artis, et al. (2011) that suggest the importance of taking into account spatial dependence and hitherto omitted variables.
Resumo:
Foreign firms have clustered together in the Yangtze River Delta, and their impact on domestic firms is an important policy issue. This paper studies the spatial effect of FDI agglomeration on the regional productivity of domestic firms, using Chinese firm-level data. To identify local FDI spillovers, we estimate the causal impact of foreign firms on domestic firms in the same county and similar industries. We then estimate a spatial-autoregressive model to examine spatial spillovers from FDI clusters to other domestic firms in distant counties. Our results show that FDI agglomeration generates positive spillovers for domestic firms, which are stronger in nearby areas than in distant areas.
Resumo:
This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.
Resumo:
There are conventional methods to calculate the centroid of spatial units and distance among them with using Geographical Information Systems (GIS). The paper points out potential measurement errors of this calculation. By taking Indian district data as an example, systematic errors concealed in such variables are shown. Two comparisons are examined; firstly, we compare the centroid obtained from the spatial units, polygons, and the centre of each city where its district headquarters locates. Secondly, between the centres represented in the above, we calculate the direct distances and road distances obtained from each pair of two districts. From the comparison between the direct distances of centroid of spatial units and the road distances of centre of district headquarters, we show the distribution of errors and list some caveats for the use of conventional variables obtained from GIS.