2 resultados para Perturbed Verblunsky coefficients

em Academic Research Repository at Institute of Developing Economies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gravity model, entropy model, potential type model and others like these have been adopted to formulate interregional trade coefficients under the framework of Multi-Regional I-O (MRIO) analysis. Since most of these models are based upon analogies in physics or on statistical principles, they do not provide a theoretical explanation from the view of a firm's or individual's rational and deterministic decision making. In this paper, according to the deterministic choice theory, not only is an alternative formulation of the trade coefficients presented, but also a discussion of an appropriate definition for purchasing prices indices. Since this formulation is consistent with the MRIO system, it can be employed as a useful model-building tool in multi-regional models such as the spatial CGE model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Armington Assumption in the context of multi-regional CGE models is commonly interpreted as follows: Same commodities with different origins are imperfect substitutes for each other. In this paper, a static spatial CGE model that is compatible with this assumption and explicitly considers the transport sector and regional price differentials is formulated. Trade coefficients, which are derived endogenously from the optimization behaviors of firms and households, are shown to take the form of a potential function. To investigate how the elasticity of substitutions affects equilibrium solutions, a simpler version of the model that incorporates three regions and two sectors (besides the transport sector) is introduced. Results indicate: (1) if commodities produced in different regions are perfect substitutes, regional economies will be either autarkic or completely symmetric and (2) if they are imperfect substitutes, the impact of elasticity on the price equilibrium system as well as trade coefficients will be nonlinear and sometimes very sensitive.