4 resultados para C65 - Miscellaneous Mathematical Tools
em Academic Research Repository at Institute of Developing Economies
Resumo:
This study adopts the perspective of demand spillovers to provide new insights regarding Chinese domestic-regions' production position in global value chains and their associated CO2 emissions. To this end, we constructed a new type of World Input-Output Database in which China's domestic interregional input-output table for 2007 is endogenously embedded. Then, the pattern of China's regional demand spillovers across both domestic regions and countries are revealed by employing this new database. These results were further connected to endowments theory, which help to make sense of the empirical results. It is found that China's regions locate relatively upstream in GVCs, and had CO2 emissions in net exports, which were entirely predicted by the environmental extended HOV model. Our study points to micro policy instruments to combat climate change, for example, the tax reform for energy inputs that helps to change the production pattern thus has impact on trade pattern and so forth.
Resumo:
Koopman et al. (2014) developed a method to consistently decompose gross exports in value-added terms that accommodate infinite repercussions of international and inter-sector transactions. This provides a better understanding of trade in value added in global value chains than does the conventional gross exports method, which is affected by double-counting problems. However, the new framework is based on monetary input--output (IO) tables and cannot distinguish prices from quantities; thus, it is unable to consider financial adjustments through the exchange market. In this paper, we propose a framework based on a physical IO system, characterized by its linear programming equivalent that can clarify the various complexities relevant to the existing indicators and is proved to be consistent with Koopman's results when the physical decompositions are evaluated in monetary terms. While international monetary tables are typically described in current U.S. dollars, the physical framework can elucidate the impact of price adjustments through the exchange market. An iterative procedure to calculate the exchange rates is proposed, and we also show that the physical framework is also convenient for considering indicators associated with greenhouse gas (GHG) emissions.
Resumo:
Studies on the rise of global value chains (GVCs) have attracted a great deal of interest in the recent economics literature. However, due to statistical and methodological challenges, most existing research ignores domestic regional heterogeneity in assessing the impact of joining GVCs. GVCs are supported not only directly by domestic regions that export goods and services to the world market, but also indirectly by other domestic regions that provide parts, components, and intermediate services to final exporting regions. To better understand the nature of a country's position and degree of participation in GVCs, we need to fully examine the role of individual domestic regions. Understanding the domestic components of GVCs is especially important for larger economies such as China, the US, India and Japan, where there may be large variations in economic scale, geography of manufacturing, and development stages at the domestic regional level. This paper proposes a new framework for measuring domestic linkages to global value chains. This framework measures domestic linkages by endogenously embedding a target country's (e.g. China and Japan) domestic interregional input–output tables into the OECD inter-country input–output model. Using this framework, we can more clearly understand how global production is fragmented and extended internationally and domestically.
Resumo:
This paper proposes an alternative input-output based spatial-structural decomposition analysis to elucidate the role of domestic-regional heterogeneity and interregional spillover effects in determining China's regional CO2 emission growth. Our empirical results based on the 2007 and 2010 Chinese interregional input-output tables show that the changes in most regions' final demand scale, final expenditure structure and export scale give positive spatial spillover effects on other regions' CO2 emission growth, the changes in most regions' consumption and export preference help the reduction of other regions' CO2 emissions, the changes in production technology, and investment preference may give positive or negative impacts on other region's CO2 emission growth through domestic supply chains. For some regions, the aggregate spillover effect from other regions may be larger than the intra-regional effect in determining regional emission growth. All these facts can significantly help better and deeper understanding on the driving forces of China's regional CO2 emission growth, thus can enrich the policy implication concerning a narrow definition of "carbon leakage" through domestic-interregional trade, and relevant political consensus about the responsibility sharing between developed and developing regions inside China.