7 resultados para C21 - Cross-Sectional Models
em Academic Research Repository at Institute of Developing Economies
Resumo:
We utilize Thailand's the financial crisis in 1997 as a natural experiment which exogenously shifts labor demand. Convincing evidence from the Thailand Labor Force Survey support the hypothesis that both employment opportunities and wages shrunk for new entrants after the crisis. We find that workers who entered before the crisis experienced job losses and wage losses. But these losses were smaller than those of new entrants after the crisis. We also find that new entrants after the crisis experienced a 10% reduction in the overtime wages compared to new entrants before the crisis.
Are Job Networks Localized in a Developing Economy? Search Methods for Displaced Workers in Thailand
Resumo:
Effects of localized personal networks on the choice of search methods are studied in this paper using evidence of displaced workers by establishment closure in Thailand Labor Force Survey, 2001. For the blocks/villages level, there is less significant evidence of local interactions between job-seekers and referrals in developing labor markets. The effects of localized personal networks do not play an important role in the probability of unemployed job-seekers seeking assistance from friends and relatives. Convincing evidence from the data supports the proposition that both self-selection of individual background-like professions and access to large markets determine the choice of job search method.
Resumo:
This paper estimates the elasticity of labor productivity with respect to employment density, a widely used measure of the agglomeration effect, in the Yangtze River Delta, China. A spatial Durbin model is presented that makes explicit the influences of spatial dependence and endogeneity bias in a very simple way. Results of Bayesian estimation using the data of the year 2009 indicate that the productivity is influenced by factors correlated with density rather than density itself and that spatial spillovers of these factors of agglomeration play a significant role. They are consistent with the findings of Ke (2010) and Artis, et al. (2011) that suggest the importance of taking into account spatial dependence and hitherto omitted variables.
Resumo:
Foreign firms have clustered together in the Yangtze River Delta, and their impact on domestic firms is an important policy issue. This paper studies the spatial effect of FDI agglomeration on the regional productivity of domestic firms, using Chinese firm-level data. To identify local FDI spillovers, we estimate the causal impact of foreign firms on domestic firms in the same county and similar industries. We then estimate a spatial-autoregressive model to examine spatial spillovers from FDI clusters to other domestic firms in distant counties. Our results show that FDI agglomeration generates positive spillovers for domestic firms, which are stronger in nearby areas than in distant areas.
Resumo:
This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.
Resumo:
The presence of a large informal sector in developing economies poses the question of whether informal activity produces agglomeration externalities. This paper uses data on all the nonfarm establishments and enterprises in Cambodia to estimate the impact of informal agglomeration on the regional economic performance of formal and informal firms. We develop a Bayesian approach for a spatial autoregressive model with an endogenous explanatory variable to address endogeneity and spatial dependence. We find a significantly positive effect of informal agglomeration, where informal firms gain more strongly than formal firms. Calculating the spatial marginal effects of increased agglomeration, we demonstrate that more accessible regions are more likely than less accessible regions to benefit strongly from informal agglomeration.
Resumo:
There are conventional methods to calculate the centroid of spatial units and distance among them with using Geographical Information Systems (GIS). The paper points out potential measurement errors of this calculation. By taking Indian district data as an example, systematic errors concealed in such variables are shown. Two comparisons are examined; firstly, we compare the centroid obtained from the spatial units, polygons, and the centre of each city where its district headquarters locates. Secondly, between the centres represented in the above, we calculate the direct distances and road distances obtained from each pair of two districts. From the comparison between the direct distances of centroid of spatial units and the road distances of centre of district headquarters, we show the distribution of errors and list some caveats for the use of conventional variables obtained from GIS.