3 resultados para Potential-energy Surfaces

em Memoria Académica - FaHCE, UNLP - Argentina


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis