3 resultados para Parábolas

em Memoria Académica - FaHCE, UNLP - Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La propuesta que se expone está dirigida a utilizar la recreación y creación artística como una estrategia para el aprendizaje matemático. Los alumnos realizan diseños artísticos dibujando con funciones y ecuaciones de lugares geométricos, usando como recurso didáctico graficadores y programas de geometría dinámica. Las posibilidades informáticas permiten la manipulación de las funciones modificando sus gráficas según las variaciones de sus parámetros y argumentos, restringiendo sus dominios y planteando las ecuaciones adecuadas a ciertas condiciones del diseño. Los alumnos deben aprender a transformar las ecuaciones de las funciones al tipo de coordenadas que el programa utilizado acepta, por lo que pueden identificarse ecuaciones implícitas, explícitas, paramétricas, y funciones en coordenadas polares. Los diseños se realizan en graficadores del tipo del Graphmática o Winplots, recomendándose aquéllos graficadores menos potentes porque exigen un trabajo matemático más profundo. El diseño es de creación libre en la primera etapa y luego se realizan actividades algebraicas en forma guiada, en base a un diseño dado, lo que constituye una tarea para la ejercitación con un fin determinado. Asimismo estas acciones pueden ser evaluadas por el docente desde la visión matemática, además de la artística. El uso de los comandos adecuados de ciertos programas de geometría dinámica permite la búsqueda de lugares geométricos, los que serán un recurso valioso para la creación. Si propiciamos la observación del entorno y proponemos la matematización de imágenes para ser recreadas utilizando funciones y ecuaciones, que permitan la graficación de rectas, parábolas, funciones polinómicas, funciones trigonométricas, circunferencias, círculos, elipses, cicloides, epicicloides e hipocicloides, podemos fundamentalmente crear ,generando la construcción de aprendizajes, la interpretación de conceptos desde distintos registros semióticos , el registro de ideas, la elaboración de conclusiones , la comunicación de los logros y dificultades, , la creación de obras artísticas en diseños computacionales, pintura y escultura, y fundamentalmente, la institucionalización de nuevos contenidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La propuesta que se expone está dirigida a utilizar la recreación y creación artística como una estrategia para el aprendizaje matemático. Los alumnos realizan diseños artísticos dibujando con funciones y ecuaciones de lugares geométricos, usando como recurso didáctico graficadores y programas de geometría dinámica. Las posibilidades informáticas permiten la manipulación de las funciones modificando sus gráficas según las variaciones de sus parámetros y argumentos, restringiendo sus dominios y planteando las ecuaciones adecuadas a ciertas condiciones del diseño. Los alumnos deben aprender a transformar las ecuaciones de las funciones al tipo de coordenadas que el programa utilizado acepta, por lo que pueden identificarse ecuaciones implícitas, explícitas, paramétricas, y funciones en coordenadas polares. Los diseños se realizan en graficadores del tipo del Graphmática o Winplots, recomendándose aquéllos graficadores menos potentes porque exigen un trabajo matemático más profundo. El diseño es de creación libre en la primera etapa y luego se realizan actividades algebraicas en forma guiada, en base a un diseño dado, lo que constituye una tarea para la ejercitación con un fin determinado. Asimismo estas acciones pueden ser evaluadas por el docente desde la visión matemática, además de la artística. El uso de los comandos adecuados de ciertos programas de geometría dinámica permite la búsqueda de lugares geométricos, los que serán un recurso valioso para la creación. Si propiciamos la observación del entorno y proponemos la matematización de imágenes para ser recreadas utilizando funciones y ecuaciones, que permitan la graficación de rectas, parábolas, funciones polinómicas, funciones trigonométricas, circunferencias, círculos, elipses, cicloides, epicicloides e hipocicloides, podemos fundamentalmente crear ,generando la construcción de aprendizajes, la interpretación de conceptos desde distintos registros semióticos , el registro de ideas, la elaboración de conclusiones , la comunicación de los logros y dificultades, , la creación de obras artísticas en diseños computacionales, pintura y escultura, y fundamentalmente, la institucionalización de nuevos contenidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La propuesta que se expone está dirigida a utilizar la recreación y creación artística como una estrategia para el aprendizaje matemático. Los alumnos realizan diseños artísticos dibujando con funciones y ecuaciones de lugares geométricos, usando como recurso didáctico graficadores y programas de geometría dinámica. Las posibilidades informáticas permiten la manipulación de las funciones modificando sus gráficas según las variaciones de sus parámetros y argumentos, restringiendo sus dominios y planteando las ecuaciones adecuadas a ciertas condiciones del diseño. Los alumnos deben aprender a transformar las ecuaciones de las funciones al tipo de coordenadas que el programa utilizado acepta, por lo que pueden identificarse ecuaciones implícitas, explícitas, paramétricas, y funciones en coordenadas polares. Los diseños se realizan en graficadores del tipo del Graphmática o Winplots, recomendándose aquéllos graficadores menos potentes porque exigen un trabajo matemático más profundo. El diseño es de creación libre en la primera etapa y luego se realizan actividades algebraicas en forma guiada, en base a un diseño dado, lo que constituye una tarea para la ejercitación con un fin determinado. Asimismo estas acciones pueden ser evaluadas por el docente desde la visión matemática, además de la artística. El uso de los comandos adecuados de ciertos programas de geometría dinámica permite la búsqueda de lugares geométricos, los que serán un recurso valioso para la creación. Si propiciamos la observación del entorno y proponemos la matematización de imágenes para ser recreadas utilizando funciones y ecuaciones, que permitan la graficación de rectas, parábolas, funciones polinómicas, funciones trigonométricas, circunferencias, círculos, elipses, cicloides, epicicloides e hipocicloides, podemos fundamentalmente crear ,generando la construcción de aprendizajes, la interpretación de conceptos desde distintos registros semióticos , el registro de ideas, la elaboración de conclusiones , la comunicación de los logros y dificultades, , la creación de obras artísticas en diseños computacionales, pintura y escultura, y fundamentalmente, la institucionalización de nuevos contenidos.