5 resultados para Conocimiento matemático
em Memoria Académica - FaHCE, UNLP - Argentina
Resumo:
El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.
Resumo:
El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.
Resumo:
El abordaje desde un enfoque interdisciplinario de ciertas problemáticas de la Geometría y del Arte no forma, por lo general, parte de la currícula de formación de grado ni de los profesores en matemática ni de los profesionales del diseño. En los cursos de posgrado GEOMETRÍA Y ARTE, niveles I y II: Morfogeneradores geométricos en el diseño se propone a los cursantes analizar las formas geométricas que subyacen en ciertos hechos de diseño, construyendo conocimientos teóricos y prácticos sobre las relaciones entre geometría y arte, a partir de una perspectiva que integra ambas disciplinas. Desde el marco didáctico que organiza la propuesta, para aprender los conocimientos matemáticos específicos los alumnos resuelven problemas, apropiándose de los modos de hacer y comunicar de dicha disciplina, otorgando así sentido al conocimiento matemático, que es considerado un producto cultural. La Geometría que se estudia es la implicada a partir de sus aplicaciones en el campo del diseño, como generadora de formas. Por otra parte, en las obras plásticas y de diseño que se indagan, se analizan patrones de orden y belleza y se considera el aspecto geométrico de su proceso creativo. Así, la simbiosis Geometría y Arte, constituye una efectiva herramienta para la labor específica del cursante, quien podrá transferir los conocimientos y metodología de análisis aprendidos, ya sea al ámbito educativo y/o al campo proyectual. Como ejemplo, se presenta el caso de la Vesica Piscis, forma característica de la Geometría sagrada de la Edad Media.
Resumo:
Los resultados obtenidos en los exámenes de admisión han sido deficientes en general, y en particular para los que se corresponden con los resultados del Eje Lógico Matemático del Departamento de Ciencia y Tecnología. Resulta conveniente el conocimiento de los errores básicos, ya que provee información sobre las dificultades con las se enfrentan los alumnos al interpretar los problemas y utilizar los diferentes procedimientos para alcanzar una meta. Los errores son datos objetivos que encontramos permanentemente en los procesos de enseñanza y aprendizaje de la matemática; constituyen un elemento estable en los mismos. A partir de este descubrimiento, el estudiante puede ocupar distintas propiedades de un concepto que antes no era capaz de utilizar. Para abordar el problema utilizaremos la clasificación en diversas categorías de los errores que Luis Rico (1995) recupera en Radatz (1979), ofreciendo una clasificación de los mismos basada en las dificultades que los ocasionan, y en la consideración teórica del error que se recupera de Socas (1997). Finalmente, luego de realizar un análisis cuantitativo de la información utilizando tablas de clasificación, presentamos una serie de sugerencias para no incurrir en el error, y evitar así la dificultad (Ruano, 2008); para pasar de este modo a las conclusiones, que incluyen una autocrítica.
Resumo:
Los resultados obtenidos en los exámenes de admisión han sido deficientes en general, y en particular para los que se corresponden con los resultados del Eje Lógico Matemático del Departamento de Ciencia y Tecnología. Resulta conveniente el conocimiento de los errores básicos, ya que provee información sobre las dificultades con las se enfrentan los alumnos al interpretar los problemas y utilizar los diferentes procedimientos para alcanzar una meta. Los errores son datos objetivos que encontramos permanentemente en los procesos de enseñanza y aprendizaje de la matemática; constituyen un elemento estable en los mismos. A partir de este descubrimiento, el estudiante puede ocupar distintas propiedades de un concepto que antes no era capaz de utilizar. Para abordar el problema utilizaremos la clasificación en diversas categorías de los errores que Luis Rico (1995) recupera en Radatz (1979), ofreciendo una clasificación de los mismos basada en las dificultades que los ocasionan, y en la consideración teórica del error que se recupera de Socas (1997). Finalmente, luego de realizar un análisis cuantitativo de la información utilizando tablas de clasificación, presentamos una serie de sugerencias para no incurrir en el error, y evitar así la dificultad (Ruano, 2008); para pasar de este modo a las conclusiones, que incluyen una autocrítica.