3 resultados para multivariate binary data
Resumo:
Para expresar la magnitud de la identidad genética (similaridad) o su complemento (distancia) entre dos individuos caracterizados molecularmente a través de marcadores del tipo microsatélites (SSR), que son multilocusmultialélicos, es necesario elegir una métrica acorde con la naturaleza multivariada de los datos. Comúnmente, las métricas de distancias genéticas son diseñadas para expresar, en un único número, la diferencia genética entre dos poblaciones y son expresadas como función de la frecuencia alélica poblacional. Dichas métricas pueden también ser utilizadas para calcular la distancia entre perfiles individuales, pero las frecuencias alélicas no son continuas en este caso. Alternativamente, se pueden usar distancias geométricas obtenidas como el complemento del índice de similaridad para datos binarios que indican la presencia/ ausencia de cada alelo en un individuo. El objetivo de este trabajo fue evaluar simultáneamente el desempeño de ambos tipos de métricas para ordenar y clasificar individuos en una base de datos generadas a partir de loci de marcadores microsatélites SSR. Se calcularon 11 métricas de distancias a partir de 17 loci SSR obtenidos desde 17 introducciones de un banco de germoplasma de soja [Glycine max (L.) Merr.]. Se evaluó el consenso de los resultados obtenidos para la clasificación de los 17 perfiles moleculares desde varias métricas. Los resultados sugieren que los diferentes tipos de métricas producen información similar para comparar individuos. No obstante, se realizó una clasificación de las métricas que responden a diferencias entre los núcleos de las expresiones de cálculo.
Resumo:
Measures of agro-ecosystems genetic variability are essential to sustain scientific-based actions and policies tending to protect the ecosystem services they provide. To build the genetic variability datum it is necessary to deal with a large number and different types of variables. Molecular marker data is highly dimensional by nature, and frequently additional types of information are obtained, as morphological and physiological traits. This way, genetic variability studies are usually associated with the measurement of several traits on each entity. Multivariate methods are aimed at finding proximities between entities characterized by multiple traits by summarizing information in few synthetic variables. In this work we discuss and illustrate several multivariate methods used for different purposes to build the datum of genetic variability. We include methods applied in studies for exploring the spatial structure of genetic variability and the association of genetic data to other sources of information. Multivariate techniques allow the pursuit of the genetic variability datum, as a unifying notion that merges concepts of type, abundance and distribution of variability at gene level.
Resumo:
This work is a multidisciplinary environmental study that provides new insights into the relationships between sediment-organic matter characteristics and polybrominated diphenyl ethers (PBDEs) concentration. The aim of the present multivariate study was to correlate factors influencing PBDEs accumulation in sediment by using principal component analysis (PCA). Organic matter studies by Fourier Transform-Infrared spectroscopy and physicochemical analyses (Total Organic Carbon, pH, electrical conductivity) of sediment samples were considered for PCA. Samples were collected from an artificial irrigation network on the Mendoza River irrigation areas. PCA provided a comprehensive analysis of the studied variables, identifying two components that explained 63% of the data variance. Those factors were mainly associated to organic matter degradation degree, which represent a new insight into the relationships between organic matter in sediments and PBDEs fate. In this sense it was possible to determine that not only the content but also the type of organic matter (chemical structure) could be relevant when evaluating PBDEs accumulation and transport in the environment. Typification of organic matter may be a useful tool to predict more feasible areas where PBDE, may accumulate, as well as sediment transportation capability.