2 resultados para Stepwise multiple linear regression
Resumo:
El objetivo del trabajo fue desarrollar estándares de calidad de uva basados en atributos físicos y químicos, capaces de predecir la calidad del vino. Se instaló una red de ensayos en Mendoza (Norte, Este y Valle de Uco), San Juan (Valle de Zonda), La Rioja (Chilecito), Catamarca y Salta (Valles Calchaquíes) (Argentina). Se ensayaron niveles de carga de uva (desbrote 30 y 50%, raleo 30 y 50% y testigo) en Malbec y Syrah. En la cosecha, las uvas fueron analizadas (tamaño baya, concentración azucarina, pH, antocianos, catequinas, taninos, fenoles totales) y vinificadas. Los vinos fueron analizados (alcohol, extracto seco, intensidad colorante, matiz, antocianos, catequinas, taninos, fenoles totales, color polimérico) y evaluados por un panel de degustadores. Empleando todos las variables de los vinos, mediante un análisis de componentes principales, se generaron dos índices que resumieron los atributos con mayor peso explicativo de la variabilidad observada (80%); ellos fueron: Riqueza Fenólica (RF, asociado a antocianos, taninos, catequinas, fenoles totales y concentración) y Peligro Oxidativo (PO, asociado a pH, matiz y tonalidad percibida). No existieron diferencias en cuanto a RF entre variedades ni entre niveles de producción de uva. Los vinos con RF mayor y PO menor se consideraron de mayor calidad. Las uvas cultivadas en zonas más frías tuvieron una mayor RF. En Malbec, las zonas frías y los bajos niveles productivos generaron un PO menor. Para cada variedad se desarrollaron predictores para RF y PO del vino. Se usó la regresión múltiple lineal paso a paso, seleccionando las variables de la uva con mayor poder predictivo. Se definieron las funciones de ajuste RFpred (Malbec R2 = 80%; Syrah R2 = 62%) y POpred (Malbec R2 = 80%; Syrah R2 = 62%). Los índices se tradujeron en estándares de calidad que mostraron concordancia entre uvas y vinos. La metodología puede ser válida para otras variedades tintas, pero debe ajustarse para cada caso. Los estándares permitirían asociar un precio a cada calidad y aumentar la transparencia del mercado.
Resumo:
Este trabajo propone una metodología basada en Sistemas de Información Geográfica para estimar la demanda de viajes en estaciones de redes de transporte público, tomando como ejemplo la red de metro de Madrid. Primero se emplea una serie de datos descriptivos para caracterizar la red, clasificar las estaciones y obtener una tipología de las mismas. Luego, con el objetivo de explicar y predecir los viajes (entradas a la red) se generan dos modelos: uno sencillo a partir de las tasas de penetración de uso del metro en función de la distancia (distance decay), y otro más complejo basado en un modelo de regresión lineal múltiple (MRLM) que incorpora variables relativas a la estación y su entorno (densidad, mezcla de usos, diseño urbano, presencia de modos competidores). Su aplicación muestra resultados alentadores, y se plantea como una alternativa a los clásicos modelos de cuatro etapas, más complejos y con un mayor coste económico.