2 resultados para Derivação (álgebra)
Resumo:
El presente libro propone profundizar lo aprendido anteriormente en el área de Matemática y avanzar en el aprendizaje de nuevos conceptos y procedimientos. Al final de este curso esperamos que el alumno pueda identificar, interpretar y utilizar, en la resolución de problemas, algunos conceptos matemáticos relacionados con: los números racionales, sus cálculos y operaciones, figuras planas y tridimensionales, las medidas y la medición, los gráficos y los distintos lenguajes matemáticos. Se editó como material de aprendizaje destinado al personal de seguridad pública de la Provincia de Mendoza en el marco del proyecto pedagógico con modalidad a distancia para la terminalidad de estudios de EGB3 y Educación Polimodal –EDITEP–, implementado a partir de la firma del Convenio entre la Universidad Nacional de Cuyo y el Gobierno de la Provincia de Mendoza, en octubre de 2003.
Resumo:
Durante siglos, la geometría y el álgebra se fueron desarrollando como disciplinas matemáticas diferentes. El filósofo y matemático francés René Descartes, publicó en el año 1637 su tratado La Géométrie en el que introdujo un método para unir esas dos ramas de la matemática, llamado Geometría Analítica, basado en el uso de sistemas coordenados, por medio de los cuales, los procesos algebraicos se pueden aplicar al estudio de la geometría. La Geometría Analítica permite hallar y estudiar los lugares geométricos de forma sistemática y general. Provee de métodos para transformar los problemas geométricos en problemas algebraicos, resolverlos analíticamente e interpretar geométricamente los resultados. Geometría Analítica para Ciencias e Ingenierías, es un texto cuyo principal objetivo es acompañar el proceso de enseñanza y aprendizaje de un curso de Geometría analítica de nivel universitario de grado, promoviendo en el estudiante el desarrollo de habilidades de observación, comparación, análisis, síntesis e integración de conceptos tanto de la Geometría Analítica plana como de la espacial. Los contenidos que se estudian en este texto tienen gran variedad de aplicaciones en investigaciones matemáticas, en astronomía, física, química, biología, ingeniería, economía, entre otros. El texto se encuentra dividido en 5 capítulos, cada uno de los cuales cuenta con el desarrollo de contenidos teóricos, ejercicios y problemas de aplicación.