53 resultados para year two
em Publishing Network for Geoscientific
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Resumo:
Commercial exploitation and abrupt changes of the natural conditions may have severe impacts on the Arctic deep-sea ecosystem. The present recolonisation experiment mimicked a situation after a catastrophic disturbance (e.g. by turbidites caused by destabilized continental slopes after methane hydrate decomposition) and investigated if the recolonisation of a deep-sea habitat by meiobenthic organisms is fostered by variations innutrition and/or sediment structure. Two "Sediment Tray Free Vehicles" were deployed for one year in summer 2003 at 2500 m water depth in the Arctic deep-sea in the eastern Fram Strait. The recolonisation trays were filled with different artificial and natural sediment types (glass beads, sand, sediment mixture, pure deep-sea sediment) and were enriched with various types of food (algae, yeast, fish). After one year, meiobenthos abundances and various sediment related environmental parameters were investigated. Foraminifera were generally the most successful group: they dominated all treatments and accounted for about 87% of the total meiobenthos. Colonizing meiobenthos specimens were generally smaller compared to those in the surrounding deep-sea sediment, suggesting an active recolonisation by juveniles. Although experimental treatments with fine-grained, algae-enriched sediment showed abundances closest to natural conditions, the results suggest that food availability was the main determining factor for a successful recolonisation by meiobenthos and the structure of recolonised sediments was shown to have a subordinate influence.
Resumo:
Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research full-factorial experiments across seasons in multi-species, cross-trophic level set-ups are essential as they allow making realistic estimations about direct and indirect effects and the relative importance of both major environmental stressors on ecosystems. In benthic mesocosm experiments we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels only had minor effects, warming had strong and persistent effects on grazers which affected the Fucus community differently depending on season. In late summer a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species resulting in overgrowth of Fucus thalli by epiphytes. In fall/ winter, outside the growing season of epiphytes, intensified grazing under warming resulted in a significant reduction of Fucus biomass. Thus, we confirm the prediction that future increasing water temperatures influence marine food-web processes by altering top-down control, but we also show that specific consequences for food-web structure depend on season. Since Fucus vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implicates the loss of key functions and services such as provision of nutrient storage, substrate, food, shelter and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.
Resumo:
Reconstructing past landscapes from historical maps requires quantifying the accuracy and completeness of these sources. The accuracy and completeness of two historical maps of the same period covering the same area in Israel were examined: the 1:63,360 British Palestine Exploration Fund map (1871-1877) and the 1:100,000 French Levés en Galilée (LG) map (1870). These maps cover the mountainous area of the Galilee (northern Israel), a region with significant natural and topographical diversity, and a long history of human presence. Land-cover features from both maps, as well as the contours drawn on the LG map, were digitized. The overall correspondence between land-cover features shown on both maps was 59% and we found that the geo-referencing method employed (transformation type and source of control points) did not significantly affect these correspondence measures. Both maps show that in the 1870s, 35% of the Galilee was covered by Mediterranean maquis, with less than 8% of the area used for permanent agricultural cropland (e.g., plantations). This article presents how the reliability of the maps was assessed by using two spatial historical sources, and how land-cover classes that were mapped with lower certainty and completeness are identified. Some of the causes that led to observed differences between the maps, including mapping scale, time of year, and the interests of the surveyors, are also identified.
Resumo:
High-frequency data collected continuously over a multiyear time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in-situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time-series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observations in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation.
Resumo:
Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.
Resumo:
Downwelling and upwelling shortwave and longwave radiation components from six active polar sites, taking part of the Baseline Surface Radiation Network (BSRN), were selected for the period of the last International Polar Year (March 2007 to March 2009), and included in the BSRN-IPY dataset, along with metadata and supplementary data for some of the stations. Two sites, located at Svalbard archipelago (Ny Ålesund) and Alaska (Barrow), represent Arctic sea-level conditions. Four Antarctic stations represent both sea-level (Dronning Maud Land and Cosmonaut Sea) and high-elevation conditions (South Pole and East Antarctic Plateau). The BSRN-IPY dataset content and quality are discussed.
Resumo:
The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.
Resumo:
This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2006 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
This data set contains measurements of species-specific plant height: vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) measured for all sown species separetly in 2002. Data was recorded in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, plant height was recorded two times: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.
Resumo:
This data set contains aboveground community plant biomass (Sown plant community, Weed plant community, and Dead plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the dominance experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the dominance experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 plant species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in May and August 2003 on all experimental plots of the dominance experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per experimental plot. The location of these rectangles was assigned by random selection of coordinates within the central area of the plots (excluding an outer edge of 50cm). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material, and remaining plant material that could not be assigned to any category. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The mean of both samples per plot and the individual measurements are provided in the data file. Overall, analyses of the community biomass data have identified species richness and the presence of particular species as an important driver of a positive biodiversity-productivity relationship.
Resumo:
The relative importance of small forms of copepods has been historically underestimated by the traditional use of 200-300-µm mesh nets. This work quantified the distribution and abundance of copepods, considering two size fractions (<300 µm and >300 µm), in superficial waters (9 m deep) of the Drake Passage and contributed to the knowledge of their interannual fluctuations among three summers. Four types of nauplii and eleven species of copepods at copepodite and adult stages were identified, with abundance values of up to 13 ind/L and 28,300 µg C/m**3. The <300-µm fraction, composed of Oithona similis, small cyclopoids and nauplii, dominated the copepod communities in the 3 years; it accounted for more than 77% of the total number and for between 40 and 63% of the total biomass. Changes in density and biomass values among the three cruises differed according to copepod size fraction and water mass; the >300-µm fraction showed no changes among the 3 years, both in Antarctic (density and biomass) and in Subantarctic waters (density), whereas the <300-µm fraction showed higher (density and biomass) values in 2001 both in Subantarctic and in Antarctic waters. Sea surface temperature and its anomaly accounted for the largest proportion of variability in copepod density and biomass, particularly for the <300-µm fraction.
Resumo:
The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM/m**2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind./m**3) in August. Algal bloom stage, chlorophyll-a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus (Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological ''hot-spots'' were associated with Arctic communities.
Resumo:
Sediments at the bottom of Lake Baikal are mostly oxidized at their surface, and the oxidized sedimentary deposits are enriched in Fe and Mn hydroxides. The thickness of the oxidized zone of the pelagic sediments averages at 5 cm and locally reaches 10-15, occasionally exceeding 20 cm. Both the thickness of the oxidized layer and the degree of its enrichment in iron and manganese hydroxides are controlled by the depth to which oxygen can penetrate into the sedimentary deposits, which is, in turn, closely related to the sedimentation conditions in the lake (which broadly vary). The sedimentation rate far off the shores of Lake Baikal ranges from <0.02 mm/year to 1.5 mm/year, and the content of organic matter buried in the sediments varies from 0.1 to >4%. The variability of the sedimentation process makes Lake Baikal very convenient to study its diagenetic processes related to redox reactions in sediments, first of all, processes responsible for the redistribution of Fe and Mn compounds. Although the diagenetic enrichment of Fe and Ni in bottom sediments is known to be of biogenic character, very scarce information is available so far on the microorganisms involved in the redistribution of these elements in sediments in Lake Baikal, which lately led us to explore this issue in detail. Our research was centered on the role played by the microbial community in the diagenetic transformations of Fe and Mn with reference to sedimentation conditions in Lake Baikal.