128 resultados para wybory w 2007 roku

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EPICA (European Project for Ice Coring in Antarctica) Dome C drilling in East Antarctica has now been completed to a depth of 3260 m, at only a few meters above bedrock. Here we present the new EDC3 chronology, which is based on the use of 1) a snow accumulation and mechanical flow model, and 2) a set of independent age markers along the core. These are obtained by pattern matching of recorded parameters to either absolutely dated paleoclimatic records, or to insolation variations. We show that this new time scale is in excellent agreement with the Dome Fuji and Vostok ice core time scales back to 100 kyr within 1 kyr. Discrepancies larger than 3 kyr arise during MIS 5.4, 5.5 and 6, which points to anomalies in either snow accumulation or mechanical flow during these time periods. We estimate that EDC3 gives accurate event durations within 20% (2 sigma) back to MIS11 and accurate absolute ages with a maximum uncertainty of 6 kyr back to 800 kyr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ~800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records. Temperature was estimated after correction for sea-water isotopic composition (Bintanja et al, 2005) and for ice sheet elevation (Parrenin et al, 2007) on EDC3 age scale (Parrenin et al, 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1986 participants of the Benthos Ecology Working Group of ICES conducted a synoptic mapping of the infauna of the southern and central North Sea. Together with a mapping of the infauna of the northern North Sea by Eleftheriou and Basford (1989, doi:10.1017/S0025315400049158) this provides the database for the description of the benthic infauna of the whole North Sea in this paper. Division of the infauna into assemblages by TWINSPAN analysis separated northern assemblages from southern assemblages along the 70 m depth contour. Assemblages were further separated by the 30, 50 m and 100 m depth contour as well as by the sediment type. In addition to widely distributed species, cold water species do not occur further south than the northern edge of the Dogger Bank, which corresponds to the 50 m depth contour. Warm water species were not found north of the 100 m depth contour. Some species occur on all types of sediment but most are restricted to a special sediment and therefore these species are limited in their distribution. The factors structuring species distributions and assemblages seem to be temperature, the influence of different water masses, e.g. Atlantic water, the type of sediment and the food supply to the benthos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1256 of Ocean Drilling Program Leg 206 to the Guatemala Basin on the eastern flank of the East Pacific Rise yielded a near-complete, middle Miocene-Quaternary carbonate-rich section that provides an opportunity to study low-latitude biostratigraphic and paleoceanographic events. The sedimentary sequence in Hole 1256B has been zoned using calcareous nannofossils according to the biostratigraphic schemes by Martini of 1971 (modified by Martini and Müller in 1986) and Okada and Bukry of 1980. The nannofossil assemblage is characteristic of the low latitudes, with abundant Gephyrocapsa, Discoaster, and Sphenolithus, and is in general moderately to well preserved, depending on nannofossil abundance and the presence of diatoms. Age estimates for the first occurrence and last occurrence of Reticulofenestra rotaria were derived from biostratigraphy and magnetostratigraphy independently and assigned to 7.18 and 6.32 Ma, respectively. Linear sedimentation rates, calculated using 28 nannofossil datums and age estimates, are high in the middle Miocene, decrease from the late Miocene to the Pliocene, then increase upsection. The abrupt drop in carbonate mass accumulation rates during the early late Miocene is referred to as the "carbonate crash." This pattern reflects (1) the long-trend decrease of productivity as the site moves away from the upwelling system at the equatorial divergence as well as (2) fluctuation in the chemistry of the bottom waters associated with production of the North Atlantic Bottom Water and ventilation via the Panama Gateway. A basement age of 14.5 Ma was obtained by extrapolating the 39.1-m/m.y. rate in the middle Miocene to the basement at 250.7 meters below seafloor, and is consistent with the ~15-Ma age of the oceanic crust estimated from marine magnetic anomalies. Reworked nannofossils and lithologic changes were used to unravel postdepositional history, and three episodes were recognized, one of which in the latest Miocene can be widely correlated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.