105 resultados para whole system design

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (-0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of 0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ~19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ~41,000 yr to ~100,000 yr duration). Two sites are studied - distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic ice retreat that includes MIS 31 should be expanded to MIS 33-31. This revised warm interval lasted about 52 kyr, in line with several other interglacials in the benthic d18O records stack of Lisiecki and Raymo (2005), including the super-interglacials MIS 11 (duration of 50 kyr) and MIS 5 (duration of 59 kyr). The record from Antarctica-proximal Site 1165, when interpreted in accord with the record from ANDRILL-1B, indicates that in these southern high latitude sectors, ice sheet retreat and the effects of warming lasted longer than at Site 1090, perhaps until MIS 27. In the current interpretations of the age models of the proximal sites, ice sheet retreat began relatively slowly, and was not really evident until the start of MIS 31. In another somewhat more speculative interpretation, ice sheet retreat began noticeably with MIS 33, and accelerated during MIS 31. Ice sheet inertia (the lag-times in the large-scale responses of major ice sheets to a forcing) likely plays an important part in the timing and scale of these events in vulnerable sectors of the AIS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climatic change is an increasing challenge for agriculture that is driving the development of suitable crops in order to ensure supply for both human nutrition and animal feed. In this context, it is increasingly important to understand the biochemical responses of cells to environmental cues at the whole system level, an aim that is being brought closer by advances in high throughput, cost-efficient plant metabolomics. To support molecular breeding activities, we have assessed the economic, technical and statistical feasibility of using direct mass spectrometry methods to evaluate the physiological state of maize (Zea mays L.) plants grown under different stress conditions.