3 resultados para web of power

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A land based mesocosm experiment focusing on the study of the simultaneous impact of warming and acidification on the planktonic food web of the Eastern Mediterranean took place in August-September 2013 at the mesocosm facilities of HCMR in Crete (CRETACOSMOS). Two different pCO2 (present day and predicted for year 2100) were applied in triplicate mesocosms of 3 m**3. This was tested in two different temperatures (ambient seawater T and ambient T plus 3°C). Twelve mesocosms in total were incubated in two large concrete tanks. Temperature was controlled by sophisticated, automated systems. A large variety of chemical, biological and biochemical variables were studied, including salinity, temperature, light and alkalinity measurements, inorganic and organic, particulate and dissolved, nutrient analyses, biological stock (Chla concentration, enumeration and community composition of microbial, phyto- and zooplankton organisms) and rate (primary, bacterial, viral production, copepod egg production, zooplankton grazing, N2 fixation, P uptake) measurements, bacterial DNA extraction and phytoplankton transcriptomics, calcifiers analyses. Twenty three scientists from 6 Institutes and 5 countries participated in this experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.