11 resultados para water regime

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A summary of calcareous nannofossil biostratigraphy performed for Late Jurassic (Kimmeridgian) to Early Cretaceous (Hauterivian) cores of Site 765 (Cores 123-765C-58R to -55R) and Site 261 (Cores 27-261-33 to -27), Argo Abyssal Plain, off northwestern Australia is presented. Precise age determinations were limited by variable preservation and the exclusion of a number of marker species due to provincialism. However, the presence of species, such as, Stephanolithion bigotii bigotii, Watznaueria manivitae, Tubodiscus verenae, and Cruciellipsis cuvillieri results in a reasonably good degree of biostratigraphic control. Biogeographic interpretation of the nannofossil data suggests that the Argo Basin occupied a position transitional between the Tethyan and Austral nannofloral realms. A cooler water regime is suggested by the absence of thermophyllic Tethyan forms, such as Nannoconus, and the presence of taxa that display bipolar distribution, such as Crucibiscutum salebrosum. Two new species, Zeugrhabdotus cooperi and Cyclagelosphaera argoensis, and one new combination, Haqius ellipticus are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an extension of > 40 km**2 the recently discovered Campeche cold-water coral province located at the northeastern rim of the Campeche Bank in the southern Gulf of Mexico belongs to the largest coherent cold-water coral areas discovered so far. The Campeche province consists of numerous 20-40 m-high elongated coral mounds that are developed in intermediate water depths of 500 to 600 m. The mounds are colonized by a vivid cold-water coral ecosystem that covers the upper flanks and summits. The rich coral community is dominated by the framework-building Scleractinia Enallopsammia profunda and Lophelia pertusa, while the associated benthic megafauna shows a rather scarce occurrence. The recent environmental setting is characterized by a high surface water production caused by a local upwelling center and a dynamic bottom-water regime comprising vigorous bottom currents, obvious temporal variability, and strong density contrasts, which all together provide optimal conditions for the growth of cold-water corals. This setting - potentially supported by the diel vertical migration of zooplankton in the Campeche area - controls the delivering of food particles to the corals. The Campeche cold-water coral province is, thus, an excellent example highlighting the importance of the oceanographic setting in securing the food supply for the development of large and vivid cold-water coral ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop continuous stratification in summer for at least 1 month. The modeled vertical heat flux across the bottom sediment tends towards an annual mean of zero, with maximum downward fluxes of about 5 W/m**2 in summer and with heat released back into the water column at a rate of less than 1 W/m**2 during the ice-covered period. The lakes are shown to be efficient heat absorbers and effectively distribute the heat through mixing. Monthly bottom water temperatures during the ice-free period range up to 15 °C and are therefore higher than the associated monthly air or ground temperatures in the surrounding frozen permafrost landscape. The investigated lakes remain unfrozen at depth, with mean annual lake-bottom temperatures of between 2.7 and 4 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint research expedition between the French IFREMER and the German MARUM was conducted in 2011 using the R/V 'Pourquoi pas?' to study gas hydrate distributions in a pockmark field (1141-1199 m below sea surface) at the continental margin of Nigeria. The seafloor drill rig MeBo of MARUM was used to recover sediments as deep as 56.74 m below seafloor. The presence of gas hydrates in specific core sections was deduced from temperature anomalies recorded during continuous records of infrared thermal scanning and anomalies in pore water chloride concentrations. In situ sediment temperature measurements showed elevated geothermal gradients of up to 258 °C/km in the center of the so-called pockmark A which is up to 4.6 times higher than that in the background sediment (72 °C/km). The gas hydrate distribution and thermal regime in the pockmark are largely controlled by the intensity, periodicity and direction of fluid flow. The joint interaction between fluid flow, gas hydrate formation and dissolution, and the thermal regime governs pockmark formation and evolution on the Nigerian continental margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transpolar drift is strongly enriched in 228Ra accumulated on the wide Arctic shelves with subsequent rapid offshore transport. We present new data of Polarstern expeditions to the central Arctic and to the Kara and Laptev seas. Because 226Ra activities in Pacific waters are 30% higher than in Atlantic waters, we correct 226Ra for the Pacific admixture when normalizing 228Ra with 226Ra. The use of 228Ra decay as age marker critically depends on the constancy in space and time of the source activity, a condition that has not yet adequately been tested. While 228Ra decays during transit over the central basin, ingrowth of 228Th could provide an alternative age marker. The high 228Th/228Ra activity ratio (AR = 0.8-1.0) in the central basins is incompatible with a mixing model based on horizontal eddy diffusion. An advective model predicts that 228Th grows to an equilibrium AR, the value of which depends on the scavenging regime. The low AR over the Lomonosov Ridge (AR = 0.5) can be due to either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging. Suspended particulate matter load (derived from beam transmission and particulate 234Th) and total 234Th depletion data show that scavenging, although extremely low in the central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 years more likely. The combined data of 228Ra decay and 228Th ingrowth confirm the existence of a recirculating gyre in the surface water of the eastern Eurasian Basin with a river water residence time of at least 3 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and d18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and d18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin. Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30 to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift. The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32 to 34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf's bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30 to 32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic sea-ice decline is expected to have a significant impact on Arctic marine ecosystems. Ice-associated fauna play a key role in this context because they constitute a unique part of Arctic biodiversity and transmit carbon from sea-ice algae into pelagic and benthic food webs. Our study presents the first regional-scale record of under-ice faunal distribution and the environmental characteristics of under-ice habitats throughout the Eurasian Basin. Sampling was conducted with a Surface and Under-Ice Trawl, equipped with a sensor array recording ice thickness and other physical parameters during trawling. We identified 2 environmental regimes, broadly coherent with the Nansen and Amundsen Basins. The Nansen Basin regime was distinguished from the Amundsen Basin regime by heavier sea-ice conditions, higher surface salinities and higher nitrate + nitrite concentrations. We found a diverse (28 species) under-ice community throughout the Eurasian Basin. Change in community structure reflected differences in the relative contribution of abundant species. Copepods (Calanus hyperboreus and C. glacialis) dominated in the Nansen Basin regime. In the Amundsen Basin regime, amphipods (Apherusa glacialis, Themisto libellula) dominated. Polar cod Boreogadus saida was present throughout the sampling area. Abrupt changes from a dominance of ice-associated amphipods at ice-covered stations to a dominance of pelagic amphipods (T. libellula) at nearby ice-free stations emphasised the decisive influence of sea ice on small-scale patterns in the surface-layer community. The observed response in community composition to different environmental regimes indicates potential long-term alterations in Arctic marine ecosystems as the Arctic Ocean continues to change.