703 resultados para water depths
em Publishing Network for Geoscientific
Resumo:
Molecular methods provide promising tools for routine detection and quantification of toxic microalgae in plankton samples. To this end, novel TaqMan minor groove binding probes and primers targeting the small (SSU) or large (LSU) ribosomal subunit (rRNA) were developed for two species of the marine dinoflagellate genus Alexandrium (A. minutum, A. tamutum) and for three groups/ribotypes of the A. tamarense species complex: Group I/North American (NA), Group II/Mediterranean (ME) and Group III/Western European (WE). Primers and probes for real-time quantitative PCR (qPCR) were species-specific and highly efficient when tested in qPCR assays for cross-validation with pure DNA from cultured Alexandrium strains. Suitability of the qPCR assays as molecular tools for the detection and estimation of relative cell abundances of Alexandrium species and groups was evaluated from samples of natural plankton assemblages along the Scottish east coast. The results were compared with inverted microscope cell counts (Utermöhl technique) of Alexandrium spp. and associated paralytic shellfish poisoning (PSP) toxin concentrations. The qPCR assays indicated that A. tamarense (Group I) and A. tamutum were the most abundant Alexandrium taxa and both were highly positively correlated with PSP toxin content of plankton samples. Cells of A. tamarense (Group III) were present at nearly all stations but in low abundance. Alexandrium minutum and A. tamarense (Group II) cells were not detected in any of the samples, thereby arguing for their absence from the specific North Sea region, at least at the time of the survey. The sympatric occurrence of A. tamarense Group I and Group III gives further support to the hypothesis that the groups/ribotypes of the A. tamarense species complex are cryptic species rather than variants belonging to the same species.
Resumo:
This report synthesizes all of the interstitial-water chemistry studies associated with the Kerguelen Plateau phase of ODP Leg 119. Sediments were cored at six sites (49°24'S to 59°36'S) in water depths ranging from 564 to 4082 m. A total of 77 interstitial-water samples was recovered as part of the routine sampling protocol. In addition, a novel, highresolution pore-water sampling program was tested during Leg 119 that enabled us to pinpoint reaction zones and extend our data base to deeper, drier levels that were heretofore inaccessible. Data collected include interstitial-water sodium, potassium, calcium, magnesium, pH, alkalinity, sulfate, ammonia, phosphate, aqueous silica, salinity, chloride, oxidation-reduction potentials, and sediment chemistry. The northern sector (Sites 736 and 737) is characterized by the highest sedimentation rates (up to 140 m/m.y.) and thermal gradients (70°-98°C/km) encountered on the Kerguelen Plateau during Leg 119. Site 737 represents the most reactive sediment column cored on the Kerguelen Plateau. Major cation fluxes at Site 737 are the strongest measured during Leg 119. High dissolved calcium concentrations (141.5 mM) were encountered near the bottom of Hole 737B. Elevated temperatures promote silica diagenesis and the alteration of volcanic material below 300 mbsf, and a diagenetic front was discovered near 370 mbsf at Site 737. The southern portion of the Kerguelen Plateau (Sites 738 and 744) records the lowest sedimentation rates (less than 5 m/m.y.) and thermal gradients (43°C/km) of the three study areas. Major cation fluxes at the southern sites are the lowest that we measured on the Kerguelen Plateau. High-resolution sampling provided evidence for significant silica release to the pore waters during the weathering of basement basalt. The relatively low thermal gradient does not appear to be sufficient for the formation of the opal-CT and quartz chert beds and nodules that were encountered below 120 mbsf at Site 738. Sediment-accumulation rates on the Eastern Kerguelen Sediment Ridge (Sites 745 and 746) are intermediate to those of the northern and southern sites. Deposition below the regional CCD accounts for the nearly carbonate-free, siliceous sediments. Despite their low organic carbon contents (mean = 0.15%), sediments on the Eastern Kerguelen Sediment Ridge exhibit the highest pore-water alkalinity (6.77 mM), ammonium (0.50 mM), and phosphate (23 µM) concentrations measured on the Kerguelen Plateau. Major cation fluxes are intermediate to those calculated for the northern and southern sites. The Eastern Kerguelen Sediment Ridge interstitial waters are unusual, however, in that the downward flux of magnesium is greater than the upward flux of calcium.
Resumo:
A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.
Resumo:
The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.
Resumo:
Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.
Resumo:
Stable isotope analyses and scanning electron micrographs have been carried out on six planktonic forminifera species, Pulleniatina obliquiloculata, Globorotalia tumida, Sphaeroidinella dehiscens, Globigerinoides ruber, Globigerinoides sacculifer and Globigerinoides quadrilobatus from eleven box-cores taken at increasing depths in the equatorial Ontong-Java Plateau (Pacific). This allows us to describe the way dissolution affects the microstructures of the tests of the different species and to quantify the changes of isotopic composition. We may conclude that: 1) dissolution effects on test morphology and stable isotope compositions are species dependent, species with a similar habitat showing a similar trend; 2) the shallow water, thin-shelled species are the first to disappear: scanning electron microscope (SEM) work shows alteration of outer layers. Deep water, thick-shelled species are present in all samples: SEM work shows breakdown and disparition of inner layers; 3) for all species there is a similar trend towards increasing delta18O values with increasing water depths and increasing dissolution. This effect may be as high as 0.6 ? per thousand meters for Globorotalia tumida; 4) below the lysocline, around 3500 m, it appears that 13C/12C ratios slightly increase towards equilibrium values for thick shelled species: G. tumida, P. obliquiloculata and S. dehiscens. 14C dates and isotope stratigraphy of two box-cores show that all samples are recent in age, and exclude upward mixing of glacial deposits as an important factor.
Resumo:
In contrast to numerous studies on the biomass of marine microphytobenthos from temperate coastal ecosystems, little is known from polar regions. Therefore, microphytobenthos biomass was measured at several coastal sites in Arctic Kongsfjorden (Spitsbergen) during the polar summer (June-August 2006). On sandy sediments, chla varied between 8 and 200 mg/m**2 and was related to water depth, current/wave exposure and geographical location. Biomass was rather independent of abiotic parameters such as sediment properties, salinity, temperature or light availability. At three stations, sediments at water depths of 3-4, 10, 15, 20 and 30 m were investigated to evaluate the effect of light availability on microalgae. Significant differences in distribution patterns of biomass in relation to deeper waters >10 m were found. The productive periods were not as distinct as phytoplankton blooms. Only at 3-4 m water depth at all three stations were two- to threefold increases of biomass measured during the investigation period. Hydrodynamic conditions seemed to be the driving force for differences in sediment colonisation by benthic microalgae. In spite of the extreme Arctic environmental conditions for algal growth, microphytobenthos biomass was comparable to marine temperate waters.
Resumo:
We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.
Resumo:
Biostratigraphical, taxonomical, and palaeocological results were obtained from Oxfordian to Tithonian foraminifers of the Northern and Southern Atlantic Ocean boreholes of the DSDP Legs 1, 11, 36, 41, 44, 50, and 79. An oversight on the cored Jurassic sections of the DSDP Legs 79 and the corresponding foraminiferal descriptions are given. The reddish brown, clayey and carbonaceous Cat Gap Formation (Oxfordian to Tithonian) of the Northern Atlantic Ocean, rich in radiolarians, yields less or more uniform, in most cases allochthonous foraminiferal faunas of Central European shelf character. No Callovian and Upper Tithonian foraminiferaI zones can be established. The zone of Pseudomarssonella durnortieri covers the Oxfordian/Kimmeridgian, the zone of Neobulimina atlantica the Kimmeridgian/Lower Tithonian interval. Characteristic foraminiferal faunas are missing since the Upper Tithonian to Valanginian for reason of a widely distributed regression which caused hiatuses observed all over the Northern Atlantic Ocean and in parts of Europe. The Upper Jurassic cannot be subdivided into single stages by foraminiferal biostratigraphy alone. The fovaminiferal zones established by Moullad (1984) covering a Callovian-Tithonian interval may be of some local importance in the Tethyan realm: It has too long-ranging foraminiferal species to be used as index marker in the word-wide DSDP boreholes. Some taxonomical confusion is caused because in former publications some foraminiferal species have got different names both in the Jurassic and Cretaceous. The foraminiferal biostratigraphy of drilled sections from DSDP boreholes is restricted by the drilling technique and for palaeo-oceanographical, biological, and geological reasons. Foraminiferal faunas from the DSDP originally described as ,,bathyal, or ,,abyssal,, have to be derived from shallower water. This contrasts the palaeo-water depths of 3000-4000 m which result from sedimentological and palaeo-geographical investigations.
Resumo:
Two types of deep-sea dredges are currently under development for the mining of the manganese nodules, a deep-sea hydraulic dredge and a mechanical cable-bucket system. Both systems offer some advantages with the hydraulic system appearing to be advantageous in themining of a specific deposit for which it is designed while the cable-bucket system appears to be somewhat more flexible in working in a variety of deposits, topographic environments, and water depths. Environmental studies conducted in conjunction with deep-sea tests of the two types of mining systems currently indicate that substantially no environmental damage will be done in the mining of the deep-sea nodules. Because of the nature of the deposits and the way in which they can be mined, the manganese nodules appear to be a relatively pollution free and energy-saving source of a number of industrially important metals.
Resumo:
Manganese nodules and manganese carbonate concretions occur in the upper 10-15 cm of the Recent sediments of Loch Fyne, Argyllshire in water depths of 180-200 m. The nodules are spherical, a few mm to 3 cm in diameter, and consist of a black, Mn-rich core and a thin, red, Fe-rich rim. The carbonate occurs as irregular concretions, 0.5-8 cm in size, and as a cement in irregular nodule and shell fragment aggregates. It partially replaces some nodule material and clastic silicate inclusions, but does not affect aragonitic and calcitic shell fragments. The nodules are approximately 75% pure oxides and contain 30% Mn and 4% Fe. In the cores, the principal mineral phase is todorokite, with a Mn/Fe ratio of 17. The rim consists of X-ray amorphous Fe and Mn oxides with a Mn/Fe ratio of 0.66. The cores are enriched, relative to Al, in K, Ba, Co, Mo, Ni and Sr while the rims contain more P, Ti, As, Pb, Y and Zn. The manganese carbonate has the composition (Mn47.7 Ca45.1 Mg7.2) CO3. Apart from Cu, all minor elements are excluded from significant substitution in the carbonate lattice. Manganese nodules and carbonates form diagenetically within the Recent sediments of Loch Fyne. This accounts for the high Mn/Fe ratios in the oxide phases and the abundance of manganese carbonate concretions. Mn concentrations in the interstitial waters of sediment cores are high (ca. 10 ppm) as also, by inference, are the dissolved carbonate concentrations.