4 resultados para volatilization

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg/L) were as follows: alpha-hexachlorocyclohexane (alpha-HCH) 465-1013, gamma-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg/m**3) were as follows: alpha-HCH 7.5-48, gamma-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4-39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of alpha-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The alpha-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic alpha-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng/m**2/d) were as follows: alpha-HCH 6.8 ± 3.2 (2.7-13), gamma-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng/m**2/d (-1.6 to 2.0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric PBDEs were measured on a monthly basis in 2002-2004 at Point Petre, a rural site in the Great Lakes. Average air concentrations were 7.0 ± 13 pg/m**3 for the sum of 14BDE (excluding BDE-209), and 1.8 ± 1.5 pg/m**3 for BDE-209. Concentrations of 3 dominant congeners (i.e., BDE-47, 99, and 209) were comparable to previous measurements at remote/rural sites around the Great Lakes, but much lower than those at urban areas. Weak temperature dependence and strong linear correlations between relatively volatile congeners suggest importance of advective inputs of gaseous species. The significant correlation between BDE-209 and 183 implies their transport inputs associated with particles. Particle-bound percentages were found greater for highly brominated congeners than less brominated ones. These percentages increase with decreasing ambient temperatures. The observed gas/particle partitioning is consistent with laboratory measurements and fits well to the Junge-Pankow model. Using air mass back-trajectories, atmospheric transport to Point Petre was estimated as 76% for BDE-47, 67% for BDE-99, and 70% for BDE-209 from west-northwest and southwest directions. During the same time period, similar congener profiles and concentration levels were found at Alert in the Canadian High Arctic. Different inter-annual variations between Point Petre and Alert indicate that emissions from other regions than North America could also contribute PBDEs in the Arctic. In contrast to weak temperature effect at Point Petre, significant temperature dependence in the summertime implies volatilization emissions of PBDEs at Alert. Meanwhile, episodic observations in the wintertime were likely associated with enhanced inputs through long-range transport during the Arctic Haze period.