5 resultados para vapor transport equilibration (VTE)
em Publishing Network for Geoscientific
Resumo:
Massive, nearly holocrystalline dolerites from DSDP Hole 417D contain from 0.5 to 1.5% of granophyric patches composed mainly of Na-plagioclase and quartz. These patches are compositionally similar to other crystalline silicic rocks from oceanic spreading centers and differ from rarer abyssal silicic glasses. Crystalline varieties with SiO2 > 60 wt.% generally have Na/K >10, whereas silicic glasses have Na/K in the range 3-6. While crystal fractionation readily accounts for the Na2O and K2O contents of abyssal silicic glasses, both the 417D granophyres and other crystalline abyssal silicic rocks have much lower K2O than that predicted by any reasonable crystal-liquid fractionation model. We propose that high-temperature vapor phase transport is responsible for removal of potassium during late-stage crystallization of these rocks. This allows for the formation of cogenetic silicic glassy and crystalline rocks with greatly different Na/K ratios. These observations and interpretations lead to a more confident assignment of high Na/K silicic rocks of oceanic and ophiolitic environments to a cogenetic origin with basaltic oceanic crust.
Resumo:
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (~55°S) southwest Pacific sea surface temperatures (SSTs) cooled 6° to 7°C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by ~60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.
Resumo:
Although climate records from several locations around the world show nearly synchronous and abrupt changes, the nature of the inferred teleconnection is still poorly understood. On the basis of preserved laminations and molybdenum enrichments in open margin sediments we demonstrate that the oxygen content of northeast Pacific waters at 800 m depth during the Bölling-Alleröd warm period (15-13 kyr) was greatly reduced. Existing oxygen isotopic records of benthic and planktonic foraminifera suggest that this was probably due to suppressed ventilation at higher latitudes of the North Pacific. Comparison with ventilation records for the North Atlantic indicates an antiphased pattern of convection relative to the North Pacific over the past 22 kyr, perhaps due to variations in water vapor transport across Central America.