14 resultados para value distribution

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The climatic conditions of mountain habitats are greatly influenced by topography. Large differences in microclimate occur with small changes in elevation, and this complex interaction is an important determinant of mountain plant distributions. In spite of this, elevation is not often considered as a relevant predictor in species distribution models (SDMs) for mountain plants. Here, we evaluated the importance of including elevation as a predictor in SDMs for mountain plant species. We generated two sets of SDMs for each of 73 plant species that occur in the Pacific Northwest of North America; one set of models included elevation as a predictor variable and the other set did not. AUC scores indicated that omitting elevation as a predictor resulted in a negligible reduction of model performance. However, further analysis revealed that the omission of elevation resulted in large over-predictions of species' niche breadths-this effect was most pronounced for species that occupy the highest elevations. In addition, the inclusion of elevation as a predictor constrained the effects of other predictors that superficially affected the outcome of the models generated without elevation. Our results demonstrate that the inclusion of elevation as a predictor variable improves the quality of SDMs for high-elevation plant species. Because of the negligible AUC score penalty for over-predicting niche breadth, our results support the notion that AUC scores alone should not be used as a measure of model quality. More generally, our results illustrate the importance of selecting biologically relevant predictor variables when constructing SDMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep Sea Drilling Project Site 563, located on the west flank of the northern Mid-Atlantic Ridge, recovered a long Miocene section from which magnetostratigraphic and isotopic stratigraphy are available. Quantitative analyses of calcareous nannofossil assemblages have been performed in the Lower and Middle Miocene sediments from Site 563. The abundance patterns of the identified species allow us to determine several bioevents for this time interval. The recognized biohorizons, related to the available magnetostratigraphy, provide new data on the biostratigraphic value of many species and on the synchroneity of the events over a wide geographic area. Relations with the oxygen isotope stratigraphy are also reported. Sphenolith distribution is examined in particular detail due to their biostratigraphic importance in the Early Miocene. In particular the recently described species Sphenolithus procerus, Sphenolithus tintinnabulum and Sphenolithus multispinatus can be useful to subdivide the Lower Miocene zones NN2 and NN3. A large variety of Reticulofenestra pseudoumbilicus has been identified within zones NN6 and NN7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed geochemical-petrological examination of layer 2 basalts recovered during Leg 37 of the DSDP has revealed that the original distribution, form and abundance of igneous sulfide have been profoundly altered during low-grade oxidative diagenesis. The net result appears to have been a rather pervasive remobilization of igneous sulfide to form secondary pyrite accompanied by a bulk loss of sulfur equivalent to about 50-60% of the original igneous value, assuming initial saturation. It is suggested that during infiltration of seawater into the massive crystalline rock, igneous sulfide has experienced pervasive oxidation, under conditions of limited oxidation potential, to form a series of unstable, soluble sulfur species, primarily in the form of SO3[2-] and S2O3[2-]. Spontaneous decomposition of these intermediate compounds through disproportionation has resulted in partial reconstitution of the sulfur as secondary pyrite and the generation of SO4[2-] ion, which, due to its kinetic stability, has been lost from the basalt system and ultimately transferred to the ocean. This model not only satisfies the geochemical and petrological observations but also provides a suitable explanation for the highly variable delta34S values which characterize secondary sulfides in deep ocean floor basalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrology, source region, and timing of precipitation are important controls on the climate of the Great Plains of North America and the composition of terrestrial ecosystems. Moisture delivered to the Great Plains varies seasonally and predominately derives from the Gulf of Mexico/Atlantic Ocean with minor contributions from the Pacific Ocean and Arctic region. For this work, we evaluate long-term relationships for the past ~ 35 million years between North American hydrology, climate, and floral change, using isotopic records and average carbon chain lengths of higher plant n-alkanes from Gulf of Mexico sediments (DSDP Site 94). We find that carbon isotope values (d13C) of n-alkanes, corrected for variations in the d13C value of atmospheric CO2, provide minor evidence for contributions of C4 plants prior to the Middle Miocene. A sharp spike in C4 input is identified during the Middle Miocene Climatic Optimum, and the influence of C4 plants steadily increased during the Late Miocene into the Pleistocene - consistent with other North American records. Chain-length distributions of n-alkanes, indicative of the composition of higher plant communities, remained remarkably constant from 33 to 4 Ma. However, a trend toward longer chain lengths occurred during the past 4 million years, concurrent with an increase in d13C values, indicating increased C4 plant influence and potentially aridity. The hydrogen isotope values (dD) of n-alkanes are relatively invariant between 33 and 9 Ma, and then become substantially more negative (75 per mil) from 9 to 2 Ma. Changes in the plant community and temperature of precipitation can solely account for the observed variations in dD from 33 to 5 Ma, but cannot account for Plio-Pleistocene dD variations and imply substantial changes in the source region of precipitation and seasonality of moisture delivery. We posit that hydrological changes were linked to tectonic and oceanographic processes including the shoaling and closure of the Panamanian Seaway, amplification of North Atlantic Deep Water Production and an associated increase of meridional winds. The southerly movement of the Intertropical Convergence Zone near 4 Ma allowed for the development of a near-modern pressure/storm track system, driving increased aridity and changes in seasonality within the North American interior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution quantitative diatom data are tabulated for the early part of the late Pliocene ( 3.25 to 2.08 Ma ) at DSDP Site 580 in the northwestern Pacific. Sample spacing averages 11 k.y. between 3.1 and 2.8 Ma, but increases to 14 to 19 k.y. prior to 3.1 Ma and after 2.8 Ma. Q-mode factor analysis of the middle Pliocene assemblage reveals four factors which explain 92.4% of the total variance of the 47 samples studied between 3.25 and 2.55 Ma. Three of the factors are closely related to modern subarctic, transitional, and subtropical elements, while the fourth factor, which is dominated by Coscinodiscus marginatus and the extinct Pliocene species Neodenticula kamtschatica, appears to correspond to a middle Pliocene precursor of the subarctic water mass. Knowledge of the modern and generalized Pliocene paleoclimatic relationships of various diatom taxa is used to generate a paleoclimate curve ("Twt") based on the ratio of warm-water (subtropical) to cold-water diatoms with warm-water transitional taxa (Thalassionema nitzschioides, Thalassiosira oestrupii, and Coscinodiscus radiatus) factored into the equation at an intermediate (0.5) value. The "Twt" ratios at more southerly DSDP Sites 579 and 578 are consistently higher (warmer) than those at Site 580 throughout the Pliocene, suggesting the validity of the ratio as a paleoclimatic index. Diatom paleoclimatic data reveal a middle Pliocene (3.1 to 3.0 Ma) warm interval at Site 580 during which paleotemperatures may have exceeded maximum Holocene values by 3 °- 5.5 °C at least three times. This middle Pliocene warm interval is also recognized by planktic foraminifers in the North Atlantic, and it appears to correspond with generalized depleted oxygen isotope values suggesting polar warming. The diatom "Twt" curve for Site 580 compares fairly well with radiolarian and silicoflagellate paleoclimatic curves for Site 580, planktic foraminiferal sea-surface temperature estimates for the North Atlantic, and benthic oxygen isotope curves for late Pliocene, although higher resolution studies on paired samples are required to test the correspondence of these various paleoclimatic indices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of Pre- and Protohistoric anthropogenic land cover changes needs to be quantified i) to establish a baseline for comparison with current human impact on the environment and ii) to separate it from naturally occurring changes in our environment. Results are presented from the simple, adaptation-driven, spatially explicit Global Land Use and technological Evolution Simulator (GLUES) for pre-Bronze age demographic, technological and economic change. Using scaling parameters from the History Database of the Global Environment as well as GLUES-simulated population density and subsistence style, the land requirement for growing crops is estimated. The intrusion of cropland into potentially forested areas is translated into carbon loss due to deforestation with the dynamic global vegetation model VECODE. The land demand in important Prehistoric growth areas - converted from mostly forested areas - led to large-scale regional (country size) deforestation of up to 11% of the potential forest. In total, 29 Gt carbon were lost from global forests between 10 000 BC and 2000 BC and were replaced by crops; this value is consistent with other estimates of Prehistoric deforestation. The generation of realistic (agri-)cultural development trajectories at a regional resolution is a major strength of GLUES. Most of the pre-Bronze age deforestation is simulated in a broad farming belt from Central Europe via India to China. Regional carbon loss is, e.g., 5 Gt in Europe and the Mediterranean, 6 Gt on the Indian subcontinent, 18 Gt in East and Southeast Asia, or 2.3 Gt in subsaharan Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 188 of the Ocean Drilling Program (ODP), employing JOIDES Resolution, we drilled holes at three sites in the southern Indian Ocean in and near Prydz Bay, East Antarctica, between 28 January and 29 February 2000. The objectives of the voyage were to: - Core through sediments deposited when Antarctica underwent the transition from "greenhouse" to the modern "icehouse" state late in the Eocene or early in the Oligocene, at sites obtaining their sediment from the currently subglacial Gamburtsev Mountains that probably were the site of nucleation of the ice sheet (principally Site 1166); - Obtain a sediment record from times at which major changes in the ice sheet volume and characteristics took place as judged from oxygen isotope records, especially at ~23.7 Ma (Oligocene/Miocene boundary), 12-16 Ma (middle Miocene), and 2.7 Ma (late Pliocene) (mainly Site 1165); and - Sample through the upper Pliocene and Quaternary in an attempt to document fluctuations in the extent of the ice sheet over the continental shelf during the Quaternary (especially Site 1167). Paleogene foraminifer-bearing marine sections were not intersected, and thus discussion of marine sections is restricted to the Neogene. Foraminifers are not major contributors to Leg 188 chronostratigraphy but contribute to paleoenvironmental interpretation, to issues such as carbonate compensation depth (CCD) effects and source and history of sediment, and provide a basis for Sr and d18O studies. Chronostratigraphy for the various sections was compiled from diatoms, radiolarians, and paleomagnetism (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.101.2001). Foraminifers were sporadic rather than continuous except in short intervals; however, the Neogene foraminifers from the region are very poorly known and the new records proved to be of significant value in paleoenvironmental interpretation. Only at Site 1167 did drilling intersect a section that yielded foraminifers virtually throughout. Other than for the very young section at each site, there is virtually no continuity of assemblages between sites and thus each section is treated here as separate and unrelated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical distribution of common zooplankton species is examined on the base of two series of layer-by-layer net catches down to depth of 3400 m. Differences between the series are significant for most species only near the surface, whereas in deeper layers character of distribution remains the same. Great depths in the Sea of Japan are populated most actively by species performing intensive daily migrations, and less actively by species continuously confined to a definite depth range. Different character of nutrition of the animals apparently determines extent of utilization of deep layers, which are usual for the species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilizing the neutron-irradiation parameter J is one of the major uncertainties in 40Ar/39Ar dating. The associated error of the individual J-value for a sample of unknown age depends on the accuracy of the age of the geological standards, the fast-neutron fluence distribution in the reactor and the distances between standards and samples during irradiation. While it is generally assumed that rotating irradiation evens out radial neutron fluence gradients, we observed axial and radial variations of the J-values in sample irradiations in the rotating channels of two reactors. To quantify them, we included three-dimensionally distributed metallic fast- (Ni) and thermal- (Co) neutron fluence monitors in three irradiations and geological age standards in three more. Two irradiations were carried out under Cd-shielding in the FRG1 reactor in Geesthacht, Germany, and four without Cd-shielding in the LVR-15 reactor in Rez, Czech Republic. The 58Ni(nf,p)58Co activation reaction and ?-spectrometry of the 811 keV peak associated with the subsequent decay of 58Co to 58Fe allow to calculate the fast-neutron fluence. The fast-neutron fluences at known positions in the irradiation container correlate with the J-values determined by mass-spectrometric 40Ar/39Ar measurements of the geological age standards. Ra-dial neutron fluence gradients are up to 1.8 %/cm in FRG1 and up to 2.2 %/cm in LVR-15; the corre-sponding axial gradients are up to 5.9 and 2.1 %/cm. We conclude that sample rotation might not al-ways suffice to meet the needs of high-precision dating and gradient monitoring can be crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical analyses of manganese nodules from the Central Pacific Basin show that their chemical composition varies regionally, although that of the associated sediments is markedly uniform throughout the basin. Mn content varies from 16 to 32% in average. Its higher value is generally found in nodules from siliceous clay and a few from deep-sea clay. Fe content tends to enrich in nodules from deep-sea clay area. Most manganese nodules, except those from deep-sea clay, are remarkably depleted in Fe compared with ones from the other Pacific regions. Mostly, Cu and Ni contents exceed 1% in nodules from siliceous clay, and decrease towards the northwest of the basin where deep-sea clay is distributed. The inter-element relationship between manganese nodules and associated sediments suggests that the mechanism of incorporation of major and minor elements in nodules is apparently different from that of the associated sediments. This finding seems to provide a new interpretation on the problem why manganese nodules having low accumulation rate are not buried by the associated sediments with greater sedimentation rate and then occur on sediment-seawater interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (d13C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (Ctot), organic carbon (Corg), total nitrogen (Ntot), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 µmol photons m**-2 s**-1). At depths beneath the surface layer, the Corg was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A 13C enrichment with depth for the total carbon pool (Ctot) was observed, with d13C values ranging from -16.3 permil at the surface to -11.3 permil at 9-10 mm depth. Total lipids depicted a d13C value of -17.2 permil in the top millimetre and then became depleted in 13C with depth (-21.7 to -23.3 permil). The d13C value of EPS varied only slightly with depth (-16.1 to -17.3 permil) and closely followed the d13C value of Corg at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible interactions. Their analyses might improve our understanding of fossilized microbial remains from mat ecosystems.