4 resultados para unmanned aerial vehicles

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring the impact of sea storms on coastal areas is fundamental to study beach evolution and the vulnerability of low-lying coasts to erosion and flooding. Modelling wave runup on a beach is possible, but it requires accurate topographic data and model tuning, that can be done comparing observed and modeled runup. In this study we collected aerial photos using an Unmanned Aerial Vehicle after two different swells on the same study area. We merged the point cloud obtained with photogrammetry with multibeam data, in order to obtain a complete beach topography. Then, on each set of rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for both events recognizing the wet area left by the waves. We then used our topography and numerical models to simulate the wave runup and compare the model results to observed values during the two events. Our results highlight the potential of the methodology presented, which integrates UAV platforms, photogrammetry and Geographic Information Systems to provide faster and cheaper information on beach topography and geomorphology compared with traditional techniques without losing in accuracy. We use the results obtained from this technique as a topographic base for a model that calculates runup for the two swells. The observed and modeled runups are consistent, and open new directions for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of aerial photographs of sea ice floes in the marginal ice zone (MIZ) of Prydz Bay acquired from December 2004 to February 2005 during the 21st Chinese National Antarctic Research Expedition, image processing techniques are employed to extract some geometric parameters of floes from two merged transects covering the whole MIZ. Variations of these parameters with the distance into the MIZ are then obtained. Different parameters of floe size, namely area, perimeter, and mean caliper diameter (MCD), follow three similar stages of increasing, flat and increasing again, with distance from the open ocean. Floe shape parameters (roundness and the ratio of perimeter to MCD), however, have less significant variations than that of floe size. Then, to modify the deviation of the cumulative floe size distribution from the ideal power law, an upper truncated power-law function and a Weibull function are used, and four calculated parameters of the above functions are found to be important descriptors of the evolution of floe size distribution in the MIZ. Among them, Lr of the upper truncated power-law function indicates the upper limit of floe size and roughly equals the maximum floe size in each square sample area. L0 in the Weibull distribution shows an increasing proportion of larger floes in squares farther from the open ocean and roughly equals the mean floe size. D in the upper truncated power-law function is closely associated with the degree of confinement during ice breakup. Its decrease with the distance into MIZ indicates the weakening of confinement conditions on floes owing to wave attenuation. The gamma of the Weibull distribution characterizes the degree of homogeneity in a data set. It also decreases with distance into MIZ, implying that floe size distributes increase in range. Finally, a statistical test on floe size is performed to divide the whole MIZ into three distinct zones made up of floes of quite different characteristics. This zonal structure of floe size also agrees well with the trends of floe shape and floe size distribution, and is believed to be a straightforward result of wave-ice interaction in the MIZ.